Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 1;270(2):519–524. doi: 10.1042/bj2700519

Postnatal development of rat colon epithelial cells is associated with changes in the expression of the beta 1,4-N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen of alpha 2,6-sialyltransferase activity towards N-acetyl-lactosamine.

F Dall'Olio 1, N Malagolini 1, G Di Stefano 1, M Ciambella 1, F Serafini-Cessi 1
PMCID: PMC1131753  PMID: 2119176

Abstract

beta 1,4-N-Acetylgalactosaminyltransferase (beta 1,4GalNAc-transferase) and alpha 2,3-sialyltransferase are both involved in the biosynthesis of the Sda blood group antigen, which is also present in cells of large intestine. The expression of these enzymes and of alpha 2,6-sialyltransferase activity towards N-acetyl-lactosamine was investigated in rat intestinal cells and correlated with both cell differentiation and extent of postnatal maturation. The beta 1,4GalNAc-transferase activity was exclusively found in epithelial cells of the large intestine, preferentially in the proximal segments suggesting a proximal-distal gradient of expression. The beta 1,4GalNAc-transferase and alpha 2,3-sialyltransferase activity towards N-acetyl-lactosamine were expressed in all cell fractions of the colonic crypt, with a maximum activity in the deeply located cells; therefore Sda antigen biosynthesis appears to occur preferentially at a specific stage of cell differentiation. By using N-acetyl-lactosamine as an acceptor, the predominant sialyltransferase in the colon cells was that capable of adding sialic acid in the alpha 2,3- linkage, whereas in the ileum cells the major enzyme was that forming the alpha 2,6-isomer. There were dramatic changes in the expression of colonic beta 1,4GalNac-transferase and of alpha 2,6-sialyltransferase activity towards N-acetyl-lactosamine during postnatal maturation. The former enzyme, practically absent at birth, increased slowly in the first days of life and then rapidly after weaning; by contrast, the latter enzyme was largely expressed only in newborn animals. As the colonic alpha 2,3-sialyltransferase activity towards N-acetyl-lactosamine did not change during the postnatal period, the ratio between the alpha 2,6- and alpha 2,3-sialyltransferase activities was reversed after weaning.

Full text

PDF
524

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergh M. L., Koppen P., van den Eijnden D. H. High-pressure liquid chromatography of sialic acid-containing oligosaccharides. Carbohydr Res. 1981 Aug 1;94(2):225–229. doi: 10.1016/s0008-6215(00)80720-x. [DOI] [PubMed] [Google Scholar]
  2. Beyer T. A., Sadler J. E., Rearick J. I., Paulson J. C., Hill R. L. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol Relat Areas Mol Biol. 1981;52:23–175. doi: 10.1002/9780470122976.ch2. [DOI] [PubMed] [Google Scholar]
  3. Breimer M. E., Hansson G. C., Karlsson K. A., Leffler H. Glycosphingolipids and the differentiation of intestinal epithelium. Exp Cell Res. 1981 Sep;135(1):1–13. doi: 10.1016/0014-4827(81)90293-7. [DOI] [PubMed] [Google Scholar]
  4. Chu S. H., Walker W. A. Developmental changes in the activities of sialyl- and fucosyltransferases in rat small intestine. Biochim Biophys Acta. 1986 Oct 1;883(3):496–500. doi: 10.1016/0304-4165(86)90289-8. [DOI] [PubMed] [Google Scholar]
  5. Conzelmann A., Bron C. Expression of UDP-N-acetylgalactosamine: beta-galactose beta 1,4-N-acetylgalactosaminyltransferase in functionally defined T-cell clones. Biochem J. 1987 Mar 15;242(3):817–824. doi: 10.1042/bj2420817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dall'Olio F., Malagolini N., Serafini-Cessi F. Tissue distribution and age-dependent expression of beta-4-N-acetylgalactosaminyl-transferase in guinea-pig. Biosci Rep. 1987 Dec;7(12):925–932. doi: 10.1007/BF01122125. [DOI] [PubMed] [Google Scholar]
  7. Dall'Olio F., Malagolini N., di Stefano G., Minni F., Marrano D., Serafini-Cessi F. Increased CMP-NeuAc:Gal beta 1,4GlcNAc-R alpha 2,6 sialyltransferase activity in human colorectal cancer tissues. Int J Cancer. 1989 Sep 15;44(3):434–439. doi: 10.1002/ijc.2910440309. [DOI] [PubMed] [Google Scholar]
  8. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7;314(6006):53–57. doi: 10.1038/314053a0. [DOI] [PubMed] [Google Scholar]
  9. Fukuda M. Cell surface glycoconjugates as onco-differentiation markers in hematopoietic cells. Biochim Biophys Acta. 1985;780(2):119–150. doi: 10.1016/0304-419x(84)90002-7. [DOI] [PubMed] [Google Scholar]
  10. Gordon J. I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol. 1989 Apr;108(4):1187–1194. doi: 10.1083/jcb.108.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henning S. J. Ontogeny of enzymes in the small intestine. Annu Rev Physiol. 1985;47:231–245. doi: 10.1146/annurev.ph.47.030185.001311. [DOI] [PubMed] [Google Scholar]
  12. Herscovics A., Bugge B., Quaroni A., Kirsch K. Characterization of glycopeptides labelled from D-[2-3H]mannose and L-[6-3H]fucose in intestinal epithelial cell membranes during differentiation. Biochem J. 1980 Oct 15;192(1):145–153. doi: 10.1042/bj1920145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karlsson K. A. Animal glycosphingolipids as membrane attachment sites for bacteria. Annu Rev Biochem. 1989;58:309–350. doi: 10.1146/annurev.bi.58.070189.001521. [DOI] [PubMed] [Google Scholar]
  14. Kim Y. S., Perdomo J., Ochoa P., Isaacs R. A. Regional and cellular localization of glycosyltransferases in rat small intestine. Changes in enzymes with differentiation of intestinal epithelial cells. Biochim Biophys Acta. 1975 May 23;391(1):39–50. doi: 10.1016/0005-2744(75)90150-3. [DOI] [PubMed] [Google Scholar]
  15. Klemperer H. G., Haynes G. R. Thymidine kinase in rat liver during development. Biochem J. 1968 Jul;108(4):541–546. doi: 10.1042/bj1080541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kolínská J., Ivanov S., Chelibonova-Lorer H. Effect of hydrocortisone on sialyltransferase activity in the rat small intestine during maturation. Changes along the villus-crypt axis and in fetal organ culture. FEBS Lett. 1988 Dec 19;242(1):57–60. doi: 10.1016/0014-5793(88)80984-0. [DOI] [PubMed] [Google Scholar]
  17. Korhonen T. K., Väisänen-Rhen V., Rhen M., Pere A., Parkkinen J., Finne J. Escherichia coli fimbriae recognizing sialyl galactosides. J Bacteriol. 1984 Aug;159(2):762–766. doi: 10.1128/jb.159.2.762-766.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lipkin M., Higgins P. Biological markers of cell proliferation and differentiation in human gastrointestinal diseases. Adv Cancer Res. 1988;50:1–24. doi: 10.1016/s0065-230x(08)60433-9. [DOI] [PubMed] [Google Scholar]
  19. Malagolini N., Dall'Olio F., Di Stefano G., Minni F., Marrano D., Serafini-Cessi F. Expression of UDP-GalNAc:NeuAc alpha 2,3Gal beta-R beta 1,4(GalNAc to Gal) N-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen in human large intestine and colorectal carcinomas. Cancer Res. 1989 Dec 1;49(23):6466–6470. [PubMed] [Google Scholar]
  20. Moch T., Hoschützky H., Hacker J., Kröncke K. D., Jann K. Isolation and characterization of the alpha-sialyl-beta-2,3-galactosyl-specific adhesin from fimbriated Escherichia coli. Proc Natl Acad Sci U S A. 1987 May;84(10):3462–3466. doi: 10.1073/pnas.84.10.3462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parkkinen J., Virkola R., Korhonen T. K. Identification of factors in human urine that inhibit the binding of Escherichia coli adhesins. Infect Immun. 1988 Oct;56(10):2623–2630. doi: 10.1128/iai.56.10.2623-2630.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paul R. W., Choi A. H., Lee P. W. The alpha-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology. 1989 Sep;172(1):382–385. doi: 10.1016/0042-6822(89)90146-3. [DOI] [PubMed] [Google Scholar]
  23. Paulson J. C., Weinstein J., Schauer A. Tissue-specific expression of sialyltransferases. J Biol Chem. 1989 Jul 5;264(19):10931–10934. [PubMed] [Google Scholar]
  24. Rogers G. N., Daniels R. S., Skehel J. J., Wiley D. C., Wang X. F., Higa H. H., Paulson J. C. Host-mediated selection of influenza virus receptor variants. Sialic acid-alpha 2,6Gal-specific clones of A/duck/Ukraine/1/63 revert to sialic acid-alpha 2,3Gal-specific wild type in ovo. J Biol Chem. 1985 Jun 25;260(12):7362–7367. [PubMed] [Google Scholar]
  25. Runnels P. L., Moon H. W., Schneider R. A. Development of resistance with host age to adhesion of K99+ Escherichia coli to isolated intestinal epithelial cells. Infect Immun. 1980 Apr;28(1):298–300. doi: 10.1128/iai.28.1.298-300.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Serafini-Cessi F., Dall'Olio F. Guinea-pig kidney beta-N-acetylgalactosaminyltransferase towards Tamm-Horsfall glycoprotein. Requirement of sialic acid in the acceptor for transferase activity. Biochem J. 1983 Dec 1;215(3):483–489. doi: 10.1042/bj2150483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Serafini-Cessi F., Dall'Olio F., Malagolini N. Characterization of N-acetyl-beta-D-galactosaminyltransferase from guinea-pig kidney involved in the biosynthesis of Sda antigen associated with Tamm-Horsfall glycoprotein. Carbohydr Res. 1986 Aug 15;151:65–76. doi: 10.1016/s0008-6215(00)90330-6. [DOI] [PubMed] [Google Scholar]
  28. Serafini-Cessi F., Malagolini N., Dall'Olio F. Characterization and partial purification of beta-N-acetylgalactosaminyltransferase from urine of Sd(a+) individuals. Arch Biochem Biophys. 1988 Nov 1;266(2):573–582. doi: 10.1016/0003-9861(88)90290-1. [DOI] [PubMed] [Google Scholar]
  29. Shibuya N., Goldstein I. J., Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem. 1987 Feb 5;262(4):1596–1601. [PubMed] [Google Scholar]
  30. Shub M. D., Pang K. Y., Swann D. A., Walker W. A. Age-related changes in chemical composition and physical properties of mucus glycoproteins from rat small intestine. Biochem J. 1983 Nov 1;215(2):405–411. doi: 10.1042/bj2150405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sjöberg P. O., Lindahl M., Porath J., Wadström T. Purification and characterization of CS2, a sialic acid-specific haemagglutinin of enterotoxigenic Escherichia coli. Biochem J. 1988 Oct 1;255(1):105–111. doi: 10.1042/bj2550105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Slomiany B. L., Murty V. L., Slomiany A. Isolation and characterization of oligosaccharides from rat colonic mucus glycoprotein. J Biol Chem. 1980 Oct 25;255(20):9719–9723. [PubMed] [Google Scholar]
  33. Soh C. P., Donald A. S., Feeney J., Morgan W. T., Watkins W. M. Enzymic synthesis, chemical characterisation and Sda activity of GalNAc beta 1-4[NeuAc alpha 2-3]Gal beta 1-4GlcNAc and GalNAc beta 1-4[NeuAc alpha 2-3]Gal beta 1-4Glc. Glycoconj J. 1989;6(3):319–332. doi: 10.1007/BF01047851. [DOI] [PubMed] [Google Scholar]
  34. Soh C. P., Morgan W. T., Watkins W. M., Donald A. S. The relationship between the N-acetylgalactosamine content and the blood group Sda activity of Tamm and Horsfall urinary glycoprotein. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1132–1139. doi: 10.1016/0006-291x(80)90607-5. [DOI] [PubMed] [Google Scholar]
  35. Srivastava O. P., Steele M. I., Torres-Pinedo R. Maturational changes in terminal glycosylation of small intestinal microvillar proteins in the rat. Biochim Biophys Acta. 1987 Aug 5;914(2):143–151. doi: 10.1016/0167-4838(87)90057-4. [DOI] [PubMed] [Google Scholar]
  36. Suzuki Y., Nagao Y., Kato H., Matsumoto M., Nerome K., Nakajima K., Nobusawa E. Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection. Specificity for oligosaccharides and sialic acids and the sequence to which sialic acid is attached. J Biol Chem. 1986 Dec 25;261(36):17057–17061. [PubMed] [Google Scholar]
  37. Taatjes D. J., Roth J. Alteration in sialyltransferase and sialic acid expression accompanies cell differentiation in rat intestine. Eur J Cell Biol. 1988 Jun;46(2):289–298. [PubMed] [Google Scholar]
  38. Taatjes D. J., Roth J., Weinstein J., Paulson J. C. Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J Biol Chem. 1988 May 5;263(13):6302–6309. [PubMed] [Google Scholar]
  39. Torres-Pinedo R., Mahmood A. Postnatal changes in biosynthesis of microvillus membrane glycans of rat small intestine: I. Evidence of a developmental shift from terminal sialylation to fucosylation. Biochem Biophys Res Commun. 1984 Dec 14;125(2):546–553. doi: 10.1016/0006-291x(84)90574-6. [DOI] [PubMed] [Google Scholar]
  40. Weinstein J., de Souza-e-Silva U., Paulson J. C. Sialylation of glycoprotein oligosaccharides N-linked to asparagine. Enzymatic characterization of a Gal beta 1 to 3(4)GlcNAc alpha 2 to 3 sialyltransferase and a Gal beta 1 to 4GlcNAc alpha 2 to 6 sialyltransferase from rat liver. J Biol Chem. 1982 Nov 25;257(22):13845–13853. [PubMed] [Google Scholar]
  41. Weiser M. M., Walters J. R., Wilson J. R. Intestinal cell membranes. Int Rev Cytol. 1986;101:1–57. doi: 10.1016/s0074-7696(08)60245-4. [DOI] [PubMed] [Google Scholar]
  42. Williams J., Marshall R. D., van Halbeek H., Vliegenthart J. F. Structural analysis of the carbohydrate moieties of human Tamm-Horsfall glycoprotein. Carbohydr Res. 1984 Nov 15;134(1):141–155. doi: 10.1016/0008-6215(84)85029-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES