Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1990 Sep 15;270(3):803–807. doi: 10.1042/bj2700803

Contribution of glycerol and alanine to basal hepatic glucose production in the genetically obese (fa/fa) rat.

J Terrettaz 1, B Jeanrenaud 1
PMCID: PMC1131804  PMID: 2241912

Abstract

Increased hepatic glucose production has been reported to occur in the insulin-resistant genetically obese fa/fa rats. The possible existence of an increased basal gluconeogenesis in obese rats was investigated, upon comparing the metabolic fate of glycerol and alanine in liver of fed anaesthetized lean and genetically obese (fa/fa) rats. Glycerol turnover rate in obese animals was 3 times that of the lean. This increase in glycerol turnover rate was associated with an increase in blood glycerol levels in obese animals. The contribution of glycerol to glucose production was significantly increased in obese animals. In contrast, the contribution of alanine to the hepatic glucose production was similar to lean and obese animals. A higher incorporation of glucose, glycerol and alanine into hepatic lipids was observed in obese animals than in controls. It is concluded that in fed genetically obese (fa/fa) rats the high blood glycerol concentrations is a major driving force for the increased basal hepatic conversion of this substrate into glucose.

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Assimacopoulos-Jeannet F., Jeanrenaud B. Insulin activates 6-phosphofructo-2-kinase and pyruvate kinase in the liver. Indirect evidence for an action via a phosphatase. J Biol Chem. 1990 May 5;265(13):7202–7206. doi: 10.1016/0261-5614(90)90109-6. [DOI] [PubMed] [Google Scholar]
  2. Brunengraber H., Boutry M., Lowenstein J. M. Fatty acid and 3- -hydroxysterol synthesis in the perfused rat liver. Including measurements on the production of lactate, pyruvate, -hydroxy-butyrate, and acetoacetate by the fed liver. J Biol Chem. 1973 Apr 25;248(8):2656–2669. [PubMed] [Google Scholar]
  3. Claus T. H., Schlumpf J. R., El-Maghrabi M. R., Pilkis S. J. Regulation of the phosphorylation and activity of 6-phosphofructo 1-kinase in isolated hepatocytes by alpha-glycerolphosphate and fructose 2,6-bisphosphate. J Biol Chem. 1982 Jul 10;257(13):7541–7548. [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Godbole V., York D. A. Lipogenesis in situ in the genetically obese Zucker fatty rat (fa/fa): role of hyperphagia and hyperinsulinaemia. Diabetologia. 1978 Mar;14(3):191–197. doi: 10.1007/BF00429780. [DOI] [PubMed] [Google Scholar]
  6. Golden S., Chenoweth M., Dunn A., Okajima F., Katz J. Metabolism of tritium- and 14C-labeled alanine in rats. Am J Physiol. 1981 Aug;241(2):E121–E128. doi: 10.1152/ajpendo.1981.241.2.E121. [DOI] [PubMed] [Google Scholar]
  7. Gruen R. K., Greenwood M. R. Adipose tissue lipoprotein lipase and glycerol release in fasted Zucker (fa/fa) rats. Am J Physiol. 1981 Jul;241(1):E76–E83. doi: 10.1152/ajpendo.1981.241.1.E76. [DOI] [PubMed] [Google Scholar]
  8. Hue L., Bontemps F., Hers H. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J. 1975 Oct;152(1):105–114. doi: 10.1042/bj1520105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hue L., van de Werve G., Jeanrenaud B. Fructose 2,6-bisphosphate in livers of genetically obese rats. Biochem J. 1983 Sep 15;214(3):1019–1022. doi: 10.1042/bj2141019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Leturque A., Gilbert M., Girard J. Glucose turnover during pregnancy in anaesthetized post-absorptive rats. Biochem J. 1981 May 15;196(2):633–636. doi: 10.1042/bj1960633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Postle A. D., Bloxham D. P. The use of tritiated water to measure absolute rates of hepatic glycogen synthesis. Biochem J. 1980 Oct 15;192(1):65–73. doi: 10.1042/bj1920065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rohner-Jeanrenaud F., Proietto J., Ionescu E., Jeanrenaud B. Mechanism of abnormal oral glucose tolerance of genetically obese fa/fa rats. Diabetes. 1986 Dec;35(12):1350–1355. doi: 10.2337/diab.35.12.1350. [DOI] [PubMed] [Google Scholar]
  13. Schonfeld G., Pfleger B. Overproduction of very low-density lipoproteins by livers of genetically obese rats. Am J Physiol. 1971 May;220(5):1178–1181. doi: 10.1152/ajplegacy.1971.220.5.1178. [DOI] [PubMed] [Google Scholar]
  14. Stalmans W., Hers H. G. The stimulation of liver phosphorylase b by AMP, fluoride and sulfate. A technical note on the specific determination of the a and b forms of liver glycogen phosphorylase. Eur J Biochem. 1975 Jun;54(2):341–350. doi: 10.1111/j.1432-1033.1975.tb04144.x. [DOI] [PubMed] [Google Scholar]
  15. Stewart H. B., el-Maghrabi M. R., Pilkis S. J. Evidence for a phosphoenzyme intermediate in the reaction pathway of rat hepatic fructose-2,6-bisphosphatase. J Biol Chem. 1985 Oct 25;260(24):12935–12941. [PubMed] [Google Scholar]
  16. Terrettaz J., Assimacopoulos-Jeannet F., Jeanrenaud B. Inhibition of hepatic glucose production by insulin in vivo in rats: contribution of glycolysis. Am J Physiol. 1986 Apr;250(4 Pt 1):E346–E351. doi: 10.1152/ajpendo.1986.250.4.E346. [DOI] [PubMed] [Google Scholar]
  17. Triscari J., Stern J. S., Johnson P. R., Sullivan A. C. Carbohydrate metabolism in lean and obese Zucker rats. Metabolism. 1979 Feb;28(2):183–189. doi: 10.1016/0026-0495(79)90084-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES