Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jan 1;289(Pt 1):161–168. doi: 10.1042/bj2890161

Intramitochondrial control of the oxidation of hexadecanoate in skeletal muscle. A study of the acyl-CoA esters which accumulate during rat skeletal-muscle mitochondrial beta-oxidation of [U-14C]hexadecanoate and [U-14C]hexadecanoyl-carnitine.

S Eaton 1, A K Bhuiyan 1, R S Kler 1, D M Turnbull 1, K Bartlett 1
PMCID: PMC1132144  PMID: 8424753

Abstract

1. We describe the acyl-CoA and acyl-carnitine esters which arise from the incubation of well-coupled State 3 rat skeletal-muscle mitochondrial fractions with [U-14C]hexadecanoate and [U-14C]hexadecanoyl-carnitine. 2. Acyl-CoA ester intermediates of chain length 16, 14, 12, 10 and 8 carbons were detected. 3. Although incubations were in steady state in respect of oxygen consumption, 14CO2 production and generation of acid-soluble radioactivity, quantitative analysis of acyl-CoA esters showed that steady state was not achieved in respect of all intermediates. 4. 3-Hydroxyacyl- and 2-enoyl-CoA and -carnitine esters were found under normoxic conditions. 5. Direct measurement of NAD+ and NADH shows that under identical incubation conditions our observations cannot be explained by gross perturbation of the [NAD+]/[NADH] ratio. 6. We hypothesize that there is a small pool of rapidly recycling NAD+ channelled between complex I of the respiratory chain and the newly described mitochondrial-inner-membrane-associated beta-oxidation trifunctional enzyme [Uchida, Izai, Orii and Hashimoto (1992) J. Biol. Chem. 267, 1034-1041].

Full text

PDF
162

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beckmann J. D., Frerman F. E., McKean M. C. Inhibition of general acyl CoA dehydrogenase by electron transfer flavoprotein semiquinone. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1290–1294. doi: 10.1016/s0006-291x(81)80151-9. [DOI] [PubMed] [Google Scholar]
  2. Bernert J. T., Jr, Sprecher H. An analysis of partial reactions in the overall chain elongation of saturated and unsaturated fatty acids by rat liver microsomes. J Biol Chem. 1977 Oct 10;252(19):6736–6744. [PubMed] [Google Scholar]
  3. Bhuiyan A. K., Jackson S., Turnbull D. M., Aynsley-Green A., Leonard J. V., Bartlett K. The measurement of carnitine and acyl-carnitines: application to the investigation of patients with suspected inherited disorders of mitochondrial fatty acid oxidation. Clin Chim Acta. 1992 May 15;207(3):185–204. doi: 10.1016/0009-8981(92)90118-a. [DOI] [PubMed] [Google Scholar]
  4. Bhuiyan A. K., Watmough N. J., Turnbull D. M., Aynsley-Green A., Leonard J. V., Bartlett K. A new simple screening method for the diagnosis of medium chain acyl-CoA dehydrogenase deficiency. Clin Chim Acta. 1987 May 29;165(1):39–44. doi: 10.1016/0009-8981(87)90216-6. [DOI] [PubMed] [Google Scholar]
  5. Bremer J., Wojtczak A. B. Factors controlling the rate of fatty acid -oxidation in rat liver mitochondria. Biochim Biophys Acta. 1972 Dec 8;280(4):515–530. doi: 10.1016/0005-2760(72)90131-2. [DOI] [PubMed] [Google Scholar]
  6. CHANCE B. Cellular oxygen requirements. Fed Proc. 1957 Sep;16(3):671–680. [PubMed] [Google Scholar]
  7. Carpenter K., Pollitt R. J., Middleton B. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun. 1992 Mar 16;183(2):443–448. doi: 10.1016/0006-291x(92)90501-b. [DOI] [PubMed] [Google Scholar]
  8. Davidson B., Schulz H. Separation, properties, and regulation of acyl coenzyme A dehydrogenases from bovine heat and liver. Arch Biochem Biophys. 1982 Jan;213(1):155–162. doi: 10.1016/0003-9861(82)90450-7. [DOI] [PubMed] [Google Scholar]
  9. Felig P., Wahren J. Fuel homeostasis in exercise. N Engl J Med. 1975 Nov 20;293(21):1078–1084. doi: 10.1056/NEJM197511202932107. [DOI] [PubMed] [Google Scholar]
  10. Fong J. C., Schulz H. Short-chain and long-chain enoyl-CoA hydratases from pig heart muscle. Methods Enzymol. 1981;71(Pt 100):390–398. doi: 10.1016/0076-6879(81)71049-8. [DOI] [PubMed] [Google Scholar]
  11. Frerman F. E. Reaction of electron-transfer flavoprotein ubiquinone oxidoreductase with the mitochondrial respiratory chain. Biochim Biophys Acta. 1987 Sep 10;893(2):161–169. doi: 10.1016/0005-2728(87)90035-1. [DOI] [PubMed] [Google Scholar]
  12. Fukushima T., Decker R. V., Anderson W. M., Spivey H. O. Substrate channeling of NADH and binding of dehydrogenases to complex I. J Biol Chem. 1989 Oct 5;264(28):16483–16488. [PubMed] [Google Scholar]
  13. HEDMAN R. PROPERTIES OF ISOLATED SKELETAL-MUSCLE MITOCHONDRIA FROM RAT. Exp Cell Res. 1965 Apr;38:1–12. doi: 10.1016/0014-4827(65)90422-2. [DOI] [PubMed] [Google Scholar]
  14. Jackson S., Bartlett K., Land J., Moxon E. R., Pollitt R. J., Leonard J. V., Turnbull D. M. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Apr;29(4 Pt 1):406–411. doi: 10.1203/00006450-199104000-00016. [DOI] [PubMed] [Google Scholar]
  15. Jin S. J., Hoppel C. L., Tserng K. Y. Incomplete fatty acid oxidation. The production and epimerization of 3-hydroxy fatty acids. J Biol Chem. 1992 Jan 5;267(1):119–125. [PubMed] [Google Scholar]
  16. Kerner J., Bieber L. Isolation of a malonyl-CoA-sensitive CPT/beta-oxidation enzyme complex from heart mitochondria. Biochemistry. 1990 May 8;29(18):4326–4334. doi: 10.1021/bi00470a010. [DOI] [PubMed] [Google Scholar]
  17. Kler R. S., Jackson S., Bartlett K., Bindoff L. A., Eaton S., Pourfarzam M., Frerman F. E., Goodman S. I., Watmough N. J., Turnbull D. M. Quantitation of acyl-CoA and acylcarnitine esters accumulated during abnormal mitochondrial fatty acid oxidation. J Biol Chem. 1991 Dec 5;266(34):22932–22938. [PubMed] [Google Scholar]
  18. Kunz W. S. Application of the theory of steady-state flux control to mitochondrial beta-oxidation. Biomed Biochim Acta. 1991;50(12):1143–1157. [PubMed] [Google Scholar]
  19. Kunz W. S. Evaluation of electron-transfer flavoprotein and alpha-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of beta-oxidation. Biochim Biophys Acta. 1988 Jan 20;932(1):8–16. doi: 10.1016/0005-2728(88)90134-x. [DOI] [PubMed] [Google Scholar]
  20. Latipä P. M. Energy-linked regulation of mitochondrial fatty acid oxidation in the isolated perfused rat heart. J Mol Cell Cardiol. 1989 Aug;21(8):765–771. doi: 10.1016/0022-2828(89)90715-3. [DOI] [PubMed] [Google Scholar]
  21. Lopes-Cardozo M., Klazinga W., van den Bergh S. G. Accumulation of carnitine esters of beta-oxidation intermediates during palmitate oxidation by rat-liver mitochondria. Eur J Biochem. 1978 Feb;83(2):629–634. doi: 10.1111/j.1432-1033.1978.tb12132.x. [DOI] [PubMed] [Google Scholar]
  22. Mahadevan S., Malaiyandi M., Erfle J. D., Sauer F. Metabolism of L-carnitine esters of beta-substituted palmitic acid by rat liver mitochondria. J Biol Chem. 1970 Jun;245(12):3218–3224. [PubMed] [Google Scholar]
  23. Moore K. H., Radloff J. F., Hull F. E., Sweeley C. C. Incomplete fatty acid oxidation by ischemic heart: beta-hydroxy fatty acid production. Am J Physiol. 1980 Aug;239(2):H257–H265. doi: 10.1152/ajpheart.1980.239.2.H257. [DOI] [PubMed] [Google Scholar]
  24. Moore K. H., Radloff J. F., Koen A. E., Hull F. E. Incomplete fatty acid oxidation by heart mitochondria: beta-hydroxy fatty acid production. J Mol Cell Cardiol. 1982 Aug;14(8):451–459. doi: 10.1016/0022-2828(82)90151-1. [DOI] [PubMed] [Google Scholar]
  25. Oram J. F., Bennetch S. L., Neely J. R. Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem. 1973 Aug 10;248(15):5299–5309. [PubMed] [Google Scholar]
  26. Pande S. V. On rate-controlling factors of long chain fatty acid oxidation. J Biol Chem. 1971 Sep 10;246(17):5384–5390. [PubMed] [Google Scholar]
  27. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  28. Pourfarzam M., Bartlett K. Products and intermediates of the beta-oxidation of [U-14C]hexadecanedionoyl-mono-CoA by rat liver peroxisomes and mitochondria. Biochem J. 1991 Jan 1;273(Pt 1):205–210. doi: 10.1042/bj2730205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Powell P. J., Lau S. M., Killian D., Thorpe C. Interaction of acyl coenzyme A substrates and analogues with pig kidney medium-chain acyl-coA dehydrogenase. Biochemistry. 1987 Jun 16;26(12):3704–3710. doi: 10.1021/bi00386a066. [DOI] [PubMed] [Google Scholar]
  30. Ramsay R. R., Derrick J. P., Friend A. S., Tubbs P. K. Purification and properties of the soluble carnitine palmitoyltransferase from bovine liver mitochondria. Biochem J. 1987 Jun 1;244(2):271–278. doi: 10.1042/bj2440271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reichmann H., De Vivo D. C. Coordinate enzymatic activity of beta-oxidation and purine nucleotide cycle in a diversity of muscle and other organs of rat. Comp Biochem Physiol B. 1991;98(2-3):327–331. doi: 10.1016/0305-0491(91)90186-h. [DOI] [PubMed] [Google Scholar]
  32. Reiss P. D., Zuurendonk P. F., Veech R. L. Measurement of tissue purine, pyrimidine, and other nucleotides by radial compression high-performance liquid chromatography. Anal Biochem. 1984 Jul;140(1):162–171. doi: 10.1016/0003-2697(84)90148-9. [DOI] [PubMed] [Google Scholar]
  33. Saggerson E. D., Carpenter C. A. Carnitine palmitoyltransferase and carnitine octanoyltransferase activities in liver, kidney cortex, adipocyte, lactating mammary gland, skeletal muscle and heart. FEBS Lett. 1981 Jul 6;129(2):229–232. doi: 10.1016/0014-5793(81)80171-8. [DOI] [PubMed] [Google Scholar]
  34. Sherratt H. S., Watmough N. J., Johnson M. A., Turnbull D. M. Methods for study of normal and abnormal skeletal muscle mitochondria. Methods Biochem Anal. 1988;33:243–335. doi: 10.1002/9780470110546.ch6. [DOI] [PubMed] [Google Scholar]
  35. Stanley H., Sherratt A., Osmundsen H. On the mechanisms of some pharmacological actions of the hypoglycaemic toxins hypoglycin and pent-4-enoic acid. A way out of the present confusion. Biochem Pharmacol. 1976 Apr 1;25(7):743–750. doi: 10.1016/0006-2952(76)90139-8. [DOI] [PubMed] [Google Scholar]
  36. Stanley K. K., Tubbs P. K. The occurrence of intermediates in mitochondrial fatty acid oxidation. FEBS Lett. 1974 Mar 1;39(3):325–328. doi: 10.1016/0014-5793(74)80141-9. [DOI] [PubMed] [Google Scholar]
  37. Stanley K. K., Tubbs P. K. The role of intermediates in mitochondrial fatty acid oxidation. Biochem J. 1975 Jul;150(1):77–88. doi: 10.1042/bj1500077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sumegi B., Srere P. A. Complex I binds several mitochondrial NAD-coupled dehydrogenases. J Biol Chem. 1984 Dec 25;259(24):15040–15045. [PubMed] [Google Scholar]
  39. Uchida Y., Izai K., Orii T., Hashimoto T. Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem. 1992 Jan 15;267(2):1034–1041. [PubMed] [Google Scholar]
  40. Veerkamp J. H., Van Moerkerk H. T., Glatz J. F., Van Hinsbergh V. W. Incomplete palmitate oxidation in cell-free systems of rat and human muscles. Biochim Biophys Acta. 1983 Oct 11;753(3):399–410. doi: 10.1016/0005-2760(83)90064-4. [DOI] [PubMed] [Google Scholar]
  41. Veerkamp J. H., van Moerkerk T. B., Glatz J. F., Zuurveld J. G., Jacobs A. E., Wagenmakers A. J. 14CO2 production is no adequate measure of [14C]fatty acid oxidation. Biochem Med Metab Biol. 1986 Jun;35(3):248–259. doi: 10.1016/0885-4505(86)90080-0. [DOI] [PubMed] [Google Scholar]
  42. Wang H. Y., Baxter C. F., Jr, Schulz H. Regulation of fatty acid beta-oxidation in rat heart mitochondria. Arch Biochem Biophys. 1991 Sep;289(2):274–280. doi: 10.1016/0003-9861(91)90472-u. [DOI] [PubMed] [Google Scholar]
  43. Waterson R. M., Hill R. L. Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. J Biol Chem. 1972 Aug 25;247(16):5258–5265. [PubMed] [Google Scholar]
  44. Watmough N. J., Bhuiyan A. K., Bartlett K., Sherratt H. S., Turnbull D. M. Skeletal muscle mitochondrial beta-oxidation. A study of the products of oxidation of [U-14C]hexadecanoate by h.p.l.c. using continuous on-line radiochemical detection. Biochem J. 1988 Jul 15;253(2):541–547. doi: 10.1042/bj2530541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Watmough N. J., Bindoff L. A., Birch-Machin M. A., Jackson S., Bartlett K., Ragan C. I., Poulton J., Gardiner R. M., Sherratt H. S., Turnbull D. M. Impaired mitochondrial beta-oxidation in a patient with an abnormality of the respiratory chain. Studies in skeletal muscle mitochondria. J Clin Invest. 1990 Jan;85(1):177–184. doi: 10.1172/JCI114409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watmough N. J., Turnbull D. M., Sherratt H. S., Bartlett K. Measurement of the acyl-CoA intermediates of beta-oxidation by h.p.l.c. with on-line radiochemical and photodiode-array detection. Application to the study of [U-14C]hexadecanoate oxidation by intact rat liver mitochondria. Biochem J. 1989 Aug 15;262(1):261–269. doi: 10.1042/bj2620261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yang S. Y., He X. Y., Schulz H. Fatty acid oxidation in rat brain is limited by the low activity of 3-ketoacyl-coenzyme A thiolase. J Biol Chem. 1987 Sep 25;262(27):13027–13032. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES