Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 1;289(Pt 3):897–902. doi: 10.1042/bj2890897

Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions.

M Mossakowska 1, J Moraczewska 1, S Khaitlina 1, H Strzelecka-Golaszewska 1
PMCID: PMC1132260  PMID: 8435084

Abstract

Homogeneous preparations of actin devoid of the three C-terminal residues were obtained by digestion of G-actin with trypsin after blocking proteolysis at other sites by substitution of Mg2+ for the tightly bound Ca2+. Removal of the C-terminal residues resulted in the following: an enhancement of the Mg(2+)-induced hydrolysis of ATP in low-ionic-strength solutions of actin; an increase in the critical concentration for polymerization; a decrease in the initial rate of polymerization; and an enhancement of the steady-state exchange of subunits in the polymer. Electron microscopy indicated an increased fragility of the filaments assembled from truncated actin. The results suggest that removal of the C-terminal residues increases the rate constants for monomer dissociation from the polymer ends and from the oligomeric species.

Full text

PDF
901

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attri A. K., Lewis M. S., Korn E. D. The formation of actin oligomers studied by analytical ultracentrifugation. J Biol Chem. 1991 Apr 15;266(11):6815–6824. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Brenner S. L., Korn E. D. On the mechanism of actin monomer-polymer subunit exchange at steady state. J Biol Chem. 1983 Apr 25;258(8):5013–5020. [PubMed] [Google Scholar]
  4. Brenner S. L., Korn E. D. Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. J Biol Chem. 1981 Aug 25;256(16):8663–8670. [PubMed] [Google Scholar]
  5. Burtnick L. D., Chan K. W. Protection of actin against proteolysis by complex formation with deoxyribonuclease I. Can J Biochem. 1980 Dec;58(12):1348–1354. doi: 10.1139/o80-183. [DOI] [PubMed] [Google Scholar]
  6. Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
  7. Crosbie R., Adams S., Chalovich J. M., Reisler E. The interaction of caldesmon with the COOH terminus of actin. J Biol Chem. 1991 Oct 25;266(30):20001–20006. [PMC free article] [PubMed] [Google Scholar]
  8. De Couet H. G. Studies on the antigenic sites of actin: a comparative study of the immunogenic crossreactivity of invertebrate actins. J Muscle Res Cell Motil. 1983 Aug;4(4):405–427. doi: 10.1007/BF00711947. [DOI] [PubMed] [Google Scholar]
  9. Detmers P., Weber A., Elzinga M., Stephens R. E. 7-Chloro-4-nitrobenzeno-2-oxa-1,3-diazole actin as a probe for actin polymerization. J Biol Chem. 1981 Jan 10;256(1):99–105. [PubMed] [Google Scholar]
  10. Drabikowski W., Lehrer S., Nagy B., Gergely J. Loss of Cu2+-binding to actin upon removal of the C-terminal phenylalanine by carboxypeptidase A. Arch Biochem Biophys. 1977 May;181(1):359–361. doi: 10.1016/0003-9861(77)90515-x. [DOI] [PubMed] [Google Scholar]
  11. Drewes G., Faulstich H. The enhanced ATPase activity of glutathione-substituted actin provides a quantitative approach to filament stabilization. J Biol Chem. 1990 Feb 25;265(6):3017–3021. [PubMed] [Google Scholar]
  12. Elzinga M., Phelan J. J. F-actin is intermolecularly crosslinked by N,N'-p-phenylenedimaleimide through lysine-191 and cysteine-374. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6599–6602. doi: 10.1073/pnas.81.21.6599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Field V. L., Bowen W. J. The C-terminal residue of actin and its role in reactions of actin and myosin. Arch Biochem Biophys. 1968 Sep 20;127(1):59–64. doi: 10.1016/0003-9861(68)90201-4. [DOI] [PubMed] [Google Scholar]
  14. Goddette D. W., Uberbacher E. C., Bunick G. J., Frieden C. Formation of actin dimers as studied by small angle neutron scattering. J Biol Chem. 1986 Feb 25;261(6):2605–2609. [PubMed] [Google Scholar]
  15. Holmes K. C., Popp D., Gebhard W., Kabsch W. Atomic model of the actin filament. Nature. 1990 Sep 6;347(6288):44–49. doi: 10.1038/347044a0. [DOI] [PubMed] [Google Scholar]
  16. Houk T. W., Jr, Ue K. The measurement of actin concentration in solution: a comparison of methods. Anal Biochem. 1974 Nov;62(1):66–74. doi: 10.1016/0003-2697(74)90367-4. [DOI] [PubMed] [Google Scholar]
  17. Jacobson G. R., Rosenbusch J. P. ATP binding to a protease-resistant core of actin. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2742–2746. doi: 10.1073/pnas.73.8.2742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kabsch W., Mannherz H. G., Suck D., Pai E. F., Holmes K. C. Atomic structure of the actin:DNase I complex. Nature. 1990 Sep 6;347(6288):37–44. doi: 10.1038/347037a0. [DOI] [PubMed] [Google Scholar]
  19. Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lehrer S. S. The crosslinking of actin and of tropomyosin by glutaraldehyde. Biochem Biophys Res Commun. 1972 Aug 21;48(4):967–976. doi: 10.1016/0006-291x(72)90703-6. [DOI] [PubMed] [Google Scholar]
  22. Miki M., Onuma H., Mihashi K. Interaction of actin water epsilon-ATP. FEBS Lett. 1974 Sep 15;46(1):17–19. doi: 10.1016/0014-5793(74)80324-8. [DOI] [PubMed] [Google Scholar]
  23. Millonig R., Salvo H., Aebi U. Probing actin polymerization by intermolecular cross-linking. J Cell Biol. 1988 Mar;106(3):785–796. doi: 10.1083/jcb.106.3.785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mornet D., Ue K. Proteolysis and structure of skeletal muscle actin. Proc Natl Acad Sci U S A. 1984 Jun;81(12):3680–3684. doi: 10.1073/pnas.81.12.3680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. O'Donoghue S. I., Miki M., dos Remedios C. G. Removing the two C-terminal residues of actin affects the filament structure. Arch Biochem Biophys. 1992 Feb 14;293(1):110–116. doi: 10.1016/0003-9861(92)90372-4. [DOI] [PubMed] [Google Scholar]
  26. Ottolenghi P. The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish. Biochem J. 1975 Oct;151(1):61–66. doi: 10.1042/bj1510061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Selden L. A., Gershman L. C., Estes J. E. A kinetic comparison between Mg-actin and Ca-actin. J Muscle Res Cell Motil. 1986 Jun;7(3):215–224. doi: 10.1007/BF01753554. [DOI] [PubMed] [Google Scholar]
  28. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  29. Stournaras C., Drewes G., Blackholm H., Merkler I., Faulstich H. Glutathionyl(cysteine-374) actin forms filaments of low mechanical stability. Biochim Biophys Acta. 1990 Jan 19;1037(1):86–91. doi: 10.1016/0167-4838(90)90105-o. [DOI] [PubMed] [Google Scholar]
  30. Tao T., Cho J. Fluorescence lifetime quenching studies on the accessibilities of actin sulfhydryl sites. Biochemistry. 1979 Jun 26;18(13):2759–2765. doi: 10.1021/bi00580a011. [DOI] [PubMed] [Google Scholar]
  31. Tawada K., Wahl P., Auchet J. C. Study of actin and its interactions with heavy meromyosin and the regulatory proteins by the pulse fluorimetry in polarized light of a fluorescent probe attached to an actin cysteine. Eur J Biochem. 1978 Aug 1;88(2):411–419. doi: 10.1111/j.1432-1033.1978.tb12463.x. [DOI] [PubMed] [Google Scholar]
  32. Tellam R. L., Morton D. J., Clarke F. M. A common theme in the amino acid sequences of actin and many actin-binding proteins? Trends Biochem Sci. 1989 Apr;14(4):130–133. doi: 10.1016/0968-0004(89)90142-4. [DOI] [PubMed] [Google Scholar]
  33. Vandekerckhove J. Actin-binding proteins. Curr Opin Cell Biol. 1990 Feb;2(1):41–50. doi: 10.1016/s0955-0674(05)80029-8. [DOI] [PubMed] [Google Scholar]
  34. Wang Y. L., Taylor D. L. Exchange of 1,N6-etheno-ATP with actin-bound nucleotides as a tool for studying the steady-state exchange of subunits in F-actin solutions. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5503–5507. doi: 10.1073/pnas.78.9.5503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wegner A., Neuhaus J. M. Requirement of divalent cations for fast exchange of actin monomers and actin filament subunits. J Mol Biol. 1981 Dec 15;153(3):681–693. doi: 10.1016/0022-2836(81)90413-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES