Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Mar 15;290(Pt 3):833–842. doi: 10.1042/bj2900833

Proton-linked L-rhamnose transport, and its comparison with L-fucose transport in Enterobacteriaceae.

J A Muiry 1, T C Gunn 1, T P McDonald 1, S A Bradley 1, C G Tate 1, P J Henderson 1
PMCID: PMC1132357  PMID: 8384447

Abstract

1. An alkaline pH change occurred when L-rhamnose, L-mannose or L-lyxose was added to L-rhamnose-grown energy-depleted suspensions of strains of Escherichia coli. This is diagnostic of sugar-H+ symport activity. 2. L-Rhamnose, L-mannose and L-lyxose were inducers of the sugar-H+ symport and of L-[14C]rhamnose transport activity. L-Rhamnose also induced the biochemically and genetically distinct L-fucose-H+ symport activity in strains competent for L-rhamnose metabolism. 3. Steady-state kinetic measurements showed that L-mannose and L-lyxose were competitive inhibitors (alternative substrates) for the L-rhamnose transport system, and that L-galactose and D-arabinose were competitive inhibitors (alternative substrates) for the L-fucose transport system. Additional measurements with other sugars of related structure defined the different substrate specificities of the two transport systems. 4. The relative rates of H+ symport and of sugar metabolism, and the relative values of their kinetic parameters, suggested that the physiological role of the transport activity was primarily for utilization of L-rhamnose, not for L-mannose or L-lyxose. 5. L-Rhamnose transport into subcellular vesicles of E. coli was dependent on respiration, was optimal at pH 7, and was inhibited by protonophores and ionophores. It was insensitive to N-ethylmaleimide or cytochalasin B. 6. L-Rhamnose, L-mannose and L-lyxose each elicited an alkaline pH change when added to energy-depleted suspensions of L-rhamnose-grown Salmonella typhimurium LT2, Klebsiella pneumoniae, Klebsiella aerogenes, Erwinia carotovora carotovora and Erwinia carotovora atroseptica. The relative rates of subsequent acidification varied, depending on both the organism and the sugar. L-Fucose promoted an alkaline pH change in all the L-rhamnose-induced organisms except the Erwinia species. No L-rhamnose-H+ symport occurred in any organism grown on L-fucose. 7. All these results showed that L-rhamnose transport into the micro-organisms occurred by a system different from that for L-fucose transport. Both systems are energized by the trans-membrane electrochemical gradient of protons. 8. Neither steady-state kinetic measurements nor binding-protein assays revealed the existence of a second L-rhamnose transport system in E. coli.

Full text

PDF
835

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlem C., Huisman W., Neslund G., Dahms A. S. Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K-12. J Biol Chem. 1982 Mar 25;257(6):2926–2931. [PubMed] [Google Scholar]
  2. Al-Zarban S., Heffernan L., Nishitani J., Ransone L., Wilcox G. Positive control of the L-rhamnose genetic system in Salmonella typhimurium LT2. J Bacteriol. 1984 May;158(2):603–608. doi: 10.1128/jb.158.2.603-608.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ames G. F. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem. 1986;55:397–425. doi: 10.1146/annurev.bi.55.070186.002145. [DOI] [PubMed] [Google Scholar]
  4. Badía J., Baldomà L., Aguilar J., Boronat A. Identification of the rhaA, rhaB and rhaD gene products from Escherichia coli K-12. FEMS Microbiol Lett. 1989 Dec;53(3):253–257. doi: 10.1016/0378-1097(89)90226-7. [DOI] [PubMed] [Google Scholar]
  5. Baldwin S. A., Henderson P. J. Homologies between sugar transporters from eukaryotes and prokaryotes. Annu Rev Physiol. 1989;51:459–471. doi: 10.1146/annurev.ph.51.030189.002331. [DOI] [PubMed] [Google Scholar]
  6. Boos W. The galactose binding protein and its relationship to the beta-methylgalactoside permease from Escherichia coli. Eur J Biochem. 1969 Aug;10(1):66–73. doi: 10.1111/j.1432-1033.1969.tb00656.x. [DOI] [PubMed] [Google Scholar]
  7. Bradley S. A., Tinsley C. R., Muiry J. A., Henderson P. J. Proton-linked L-fucose transport in Escherichia coli. Biochem J. 1987 Dec 1;248(2):495–500. doi: 10.1042/bj2480495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown C. E., Hogg R. W. A second transport system for L-arabinose in Escherichia coli B-r controlled by the araC gene. J Bacteriol. 1972 Aug;111(2):606–613. doi: 10.1128/jb.111.2.606-613.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cairns M. T., McDonald T. P., Horne P., Henderson P. J., Baldwin S. A. Cytochalasin B as a probe of protein structure and substrate recognition by the galactose/H+ transporter of Escherichia coli. J Biol Chem. 1991 May 5;266(13):8176–8183. [PubMed] [Google Scholar]
  10. Carter-Su C., Pessin J. E., Mora R., Gitomer W., Czech M. P. Photoaffinity labeling of the human erythrocyte D-glucose transporter. J Biol Chem. 1982 May 25;257(10):5419–5425. [PubMed] [Google Scholar]
  11. Charalambous B. M., Maiden M. C., McDonald T. P., Cunningham I. J., Henderson P. J. Detection of proton-linked sugar transport proteins in Enterobacteriaceae. Biochem Soc Trans. 1989 Jun;17(3):441–444. doi: 10.1042/bst0170441a. [DOI] [PubMed] [Google Scholar]
  12. Chen Y. M., Lin E. C. Dual control of a common L-1,2-propanediol oxidoreductase by L-fucose and L-rhamnose in Escherichia coli. J Bacteriol. 1984 Mar;157(3):828–832. doi: 10.1128/jb.157.3.828-832.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chen Y. M., Zhu Y., Lin E. C. NAD-linked aldehyde dehydrogenase for aerobic utilization of L-fucose and L-rhamnose by Escherichia coli. J Bacteriol. 1987 Jul;169(7):3289–3294. doi: 10.1128/jb.169.7.3289-3294.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  15. Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974 Jan;137(1):143–144. doi: 10.1042/bj1370143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Daruwalla K. R., Paxton A. T., Henderson P. J. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J. 1981 Dec 15;200(3):611–627. doi: 10.1042/bj2000611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Davis E. O., Jones-Mortimer M. C., Henderson P. J. Location of a structural gene for xylose-H+ symport at 91 min on the linkage map of Escherichia coli K12. J Biol Chem. 1984 Feb 10;259(3):1520–1525. [PubMed] [Google Scholar]
  18. Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hacking A. J., Lin E. C. Disruption of the fucose pathway as a consequence of genetic adaptation to propanediol as a carbon source in Escherichia coli. J Bacteriol. 1976 Jun;126(3):1166–1172. doi: 10.1128/jb.126.3.1166-1172.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hacking A. J., Lin E. C. Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli. J Bacteriol. 1977 May;130(2):832–838. doi: 10.1128/jb.130.2.832-838.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henderson P. J., Giddens R. A. 2-Deoxy-D-galactose, a substrate for the galactose-transport system of Escherichia coli. Biochem J. 1977 Oct 15;168(1):15–22. doi: 10.1042/bj1680015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Henderson P. J., Giddens R. A., Jones-Mortimer M. C. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J. 1977 Feb 15;162(2):309–320. doi: 10.1042/bj1620309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Henderson P. J., Macpherson A. J. Assay, genetics, proteins, and reconstitution of proton-linked galactose, arabinose, and xylose transport systems of Escherichia coli. Methods Enzymol. 1986;125:387–429. doi: 10.1016/s0076-6879(86)25033-8. [DOI] [PubMed] [Google Scholar]
  24. Henderson P. J. Proton-linked sugar transport systems in bacteria. J Bioenerg Biomembr. 1990 Aug;22(4):525–569. doi: 10.1007/BF00762961. [DOI] [PubMed] [Google Scholar]
  25. Horne P., Henderson P. J. The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli. Biochem J. 1983 Mar 15;210(3):699–705. doi: 10.1042/bj2100699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Imae Y., Oosawa K., Mizuno T., Kihara M., Macnab R. M. Phenol: a complex chemoeffector in bacterial chemotaxis. J Bacteriol. 1987 Jan;169(1):371–379. doi: 10.1128/jb.169.1.371-379.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ingledew W. J., Poole R. K. The respiratory chains of Escherichia coli. Microbiol Rev. 1984 Sep;48(3):222–271. doi: 10.1128/mr.48.3.222-271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kaback H. R. Proton electrochemical gradients and active transport: the saga of lac permease. Ann N Y Acad Sci. 1985;456:291–304. doi: 10.1111/j.1749-6632.1985.tb14879.x. [DOI] [PubMed] [Google Scholar]
  29. Kaback H. R. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. doi: 10.1016/0304-4157(72)90014-7. [DOI] [PubMed] [Google Scholar]
  30. Lam V. M., Daruwalla K. R., Henderson P. J., Jones-Mortimer M. C. Proton-linked D-xylose transport in Escherichia coli. J Bacteriol. 1980 Jul;143(1):396–402. doi: 10.1128/jb.143.1.396-402.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lu Z., Lin E. C. The nucleotide sequence of Escherichia coli genes for L-fucose dissimilation. Nucleic Acids Res. 1989 Jun 26;17(12):4883–4884. doi: 10.1093/nar/17.12.4883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
  33. MacPherson A. J., Jones-Mortimer M. C., Henderson P. J. Identification of the AraE transport protein of Escherichia coli. Biochem J. 1981 Apr 15;196(1):269–283. doi: 10.1042/bj1960269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Macpherson A. J., Jones-Mortimer M. C., Horne P., Henderson P. J. Identification of the GalP galactose transport protein of Escherichia coli. J Biol Chem. 1983 Apr 10;258(7):4390–4396. [PubMed] [Google Scholar]
  35. Menick D. R., Lee J. A., Brooker R. J., Wilson T. H., Kaback H. R. Role of cysteine residues in the lac permease of Escherichia coli. Biochemistry. 1987 Feb 24;26(4):1132–1136. doi: 10.1021/bi00378a022. [DOI] [PubMed] [Google Scholar]
  36. Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. J Bioenerg. 1973 Jan;4(1):63–91. doi: 10.1007/BF01516051. [DOI] [PubMed] [Google Scholar]
  37. Power J. The L-rhamnose genetic system in Escherichia coli K-12. Genetics. 1967 Mar;55(3):557–568. doi: 10.1093/genetics/55.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ramos S., Kaback H. R. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles. Biochemistry. 1977 Mar 8;16(5):854–859. doi: 10.1021/bi00624a007. [DOI] [PubMed] [Google Scholar]
  39. Ramos S., Schuldiner S., Kaback H. R. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1892–1896. doi: 10.1073/pnas.73.6.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. SAWADA H., TAKAGI Y. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. 3. L-RHAMULOSE-PHOSPHATE ALDOLASE. Biochim Biophys Acta. 1964 Oct 23;92:26–32. doi: 10.1016/0926-6569(64)90265-2. [DOI] [PubMed] [Google Scholar]
  41. Schleif R. An L-arabinose binding protein and arabinose permeation in Escherichia coli. J Mol Biol. 1969 Nov 28;46(1):185–196. doi: 10.1016/0022-2836(69)90065-5. [DOI] [PubMed] [Google Scholar]
  42. Shanahan M. F. Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter. J Biol Chem. 1982 Jul 10;257(13):7290–7293. [PubMed] [Google Scholar]
  43. TAKAGI Y., SAWADA H. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. I. L-RHAMNOSE ISOMERASE. Biochim Biophys Acta. 1964 Oct 23;92:10–17. doi: 10.1016/0926-6569(64)90263-9. [DOI] [PubMed] [Google Scholar]
  44. TAKAGI Y., SAWADA H. THE METABOLISM OF L-RHAMNOSE IN ESCHERICHIA COLI. II. L-RHAMNULOSE KINASE. Biochim Biophys Acta. 1964 Oct 23;92:18–25. doi: 10.1016/0926-6569(64)90264-0. [DOI] [PubMed] [Google Scholar]
  45. Tate C. G., Muiry J. A., Henderson P. J. Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. J Biol Chem. 1992 Apr 5;267(10):6923–6932. [PubMed] [Google Scholar]
  46. Tobin J. F., Schleif R. F. Positive regulation of the Escherichia coli L-rhamnose operon is mediated by the products of tandemly repeated regulatory genes. J Mol Biol. 1987 Aug 20;196(4):789–799. doi: 10.1016/0022-2836(87)90405-0. [DOI] [PubMed] [Google Scholar]
  47. WILSON D. M., AJL S. Metabolism of L-rhamnose by Escherichia coli. I. L-rhamnose isomerase. J Bacteriol. 1957 Mar;73(3):410–414. doi: 10.1128/jb.73.3.410-414.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. WILSON D. M., AJL S. Metabolism of L-rhamnose by Escherichia coli. II. The phosphorylation of L-rhamnulose. J Bacteriol. 1957 Mar;73(3):415–420. doi: 10.1128/jb.73.3.415-420.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. West I. C. Lactose transport coupled to proton movements in Escherichia coli. Biochem Biophys Res Commun. 1970 Nov 9;41(3):655–661. doi: 10.1016/0006-291x(70)90063-x. [DOI] [PubMed] [Google Scholar]
  50. West I., Mitchell P. Proton-coupled beta-galactoside translocation in non-metabolizing Escherichia coli. J Bioenerg. 1972 Aug;3(5):445–462. doi: 10.1007/BF01516082. [DOI] [PubMed] [Google Scholar]
  51. Witholt B., Boekhout M. The effect of osmotic shock on the accessibility of the murein layer of exponentially growing Escherichia coli to lysozyme. Biochim Biophys Acta. 1978 Apr 4;508(2):296–305. doi: 10.1016/0005-2736(78)90332-2. [DOI] [PubMed] [Google Scholar]
  52. Wright J. K., Riede I., Overath P. Lactose carrier protein of Escherichia coli: interaction with galactosides and protons. Biochemistry. 1981 Oct 27;20(22):6404–6415. doi: 10.1021/bi00525a019. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES