Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Feb 15;290(Pt 1):51–57. doi: 10.1042/bj2900051

Peroxynitrite-induced luminol chemiluminescence.

R Radi 1, T P Cosgrove 1, J S Beckman 1, B A Freeman 1
PMCID: PMC1132381  PMID: 8382481

Abstract

Vascular endothelial cells, smooth muscle cells, macrophages, neutrophils, Kupffer cells and other diverse cell types generate superoxide (O2.-) and nitric oxide (.NO), which can react to form the potent oxidant peroxynitrite anion (ONOO-). Peroxynitrite reacted with luminol to yield chemiluminescence which was greatly enhanced by bicarbonate. The quantum chemiluminescence yield of the ONOO- reaction with luminol in bicarbonate was approx. 10(-3). Chemiluminescence was superoxide dismutase-inhibitable, indicating that O2.- was a key intermediate for chemiexcitation. O2.- appears to be formed secondarily to the reaction of a bicarbonate-peroxynitrite complex with luminol, yielding luminol radical and O2.-. Luminol radical reacts with O2.- to form the unstable luminol endoperoxide, which follows the light-emitting pathway. Neither .NO nor O2.- alone were capable of directly inducing significant luminol chemiluminescence in our assay systems. These results suggest that ONOO- can be a critical unrecognized mediator of cell-derived luminol chemiluminescence reported in previous studies. In addition, it is shown that bicarbonate can participate in secondary oxidation reactions after reacting with ONOO-.

Full text

PDF
51

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Regulation of macrophage physiology by L-arginine: role of the oxidative L-arginine deiminase pathway. J Immunol. 1989 Dec 1;143(11):3641–3646. [PubMed] [Google Scholar]
  2. Allen R. C. Phagocytic leukocyte oxygenation activities and chemiluminescence: a kinetic approach to analysis. Methods Enzymol. 1986;133:449–493. doi: 10.1016/0076-6879(86)33085-4. [DOI] [PubMed] [Google Scholar]
  3. Archer S. L., Nelson D. P., Weir E. K. Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol (1985) 1989 Nov;67(5):1903–1911. doi: 10.1152/jappl.1989.67.5.1903. [DOI] [PubMed] [Google Scholar]
  4. Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beyer W. F., Jr, Fridovich I. Does copper (II) ethylenediaminetetraacetate disproportionate superoxide? Anal Biochem. 1988 Aug 15;173(1):160–165. doi: 10.1016/0003-2697(88)90173-x. [DOI] [PubMed] [Google Scholar]
  6. Chen S. N., Hoffman M. Z. Rate constants for the reaction of the carbonate radical with compounds of biochemical interest in neutral aqueous solution. Radiat Res. 1973 Oct;56(1):40–47. [PubMed] [Google Scholar]
  7. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  8. Flohé L., Otting F. Superoxide dismutase assays. Methods Enzymol. 1984;105:93–104. doi: 10.1016/s0076-6879(84)05013-8. [DOI] [PubMed] [Google Scholar]
  9. Gryglewski R. J., Palmer R. M., Moncada S. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature. 1986 Apr 3;320(6061):454–456. doi: 10.1038/320454a0. [DOI] [PubMed] [Google Scholar]
  10. Hodgson E. K., Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. doi: 10.1021/bi00695a010. [DOI] [PubMed] [Google Scholar]
  11. Hodgson E. K., Fridovich I. The role of O2- in the chemiluminescence of luminol. Photochem Photobiol. 1973 Dec;18(6):451–455. doi: 10.1111/j.1751-1097.1973.tb06449.x. [DOI] [PubMed] [Google Scholar]
  12. Hogg N., Darley-Usmar V. M., Wilson M. T., Moncada S. Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. Biochem J. 1992 Jan 15;281(Pt 2):419–424. doi: 10.1042/bj2810419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ischiropoulos H., Zhu L., Beckman J. S. Peroxynitrite formation from macrophage-derived nitric oxide. Arch Biochem Biophys. 1992 Nov 1;298(2):446–451. doi: 10.1016/0003-9861(92)90433-w. [DOI] [PubMed] [Google Scholar]
  14. Ischiropoulos H., Zhu L., Chen J., Tsai M., Martin J. C., Smith C. D., Beckman J. S. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992 Nov 1;298(2):431–437. doi: 10.1016/0003-9861(92)90431-u. [DOI] [PubMed] [Google Scholar]
  15. Koppenol W. H., Moreno J. J., Pryor W. A., Ischiropoulos H., Beckman J. S. Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chem Res Toxicol. 1992 Nov-Dec;5(6):834–842. doi: 10.1021/tx00030a017. [DOI] [PubMed] [Google Scholar]
  16. Marletta M. A. Nitric oxide: biosynthesis and biological significance. Trends Biochem Sci. 1989 Dec;14(12):488–492. doi: 10.1016/0968-0004(89)90181-3. [DOI] [PubMed] [Google Scholar]
  17. Matheis G., Sherman M. P., Buckberg G. D., Haybron D. M., Young H. H., Ignarro L. J. Role of L-arginine-nitric oxide pathway in myocardial reoxygenation injury. Am J Physiol. 1992 Feb;262(2 Pt 2):H616–H620. doi: 10.1152/ajpheart.1992.262.2.H616. [DOI] [PubMed] [Google Scholar]
  18. Matsubara T., Ziff M. Superoxide anion release by human endothelial cells: synergism between a phorbol ester and a calcium ionophore. J Cell Physiol. 1986 May;127(2):207–210. doi: 10.1002/jcp.1041270203. [DOI] [PubMed] [Google Scholar]
  19. Merényi G., Lind J., Eriksen T. E. Luminol chemiluminescence: chemistry, excitation, emitter. J Biolumin Chemilumin. 1990 Jan-Mar;5(1):53–56. doi: 10.1002/bio.1170050111. [DOI] [PubMed] [Google Scholar]
  20. Michelson A. M., Durosay P. Hemolysis of human erythrocytes by activated oxygen species. Photochem Photobiol. 1977 Jan;25(1):55–63. doi: 10.1111/j.1751-1097.1977.tb07424.x. [DOI] [PubMed] [Google Scholar]
  21. Michelson A. M., Maral J. Carbonate anions; effects on the oxidation of luminol, oxidative hemolysis, gamma-irradiation and the reaction of activated oxygen species with enzymes containing various active centres. Biochimie. 1983 Feb;65(2):95–104. doi: 10.1016/s0300-9084(83)80179-5. [DOI] [PubMed] [Google Scholar]
  22. Miller E. K., Fridovich I. A demonstration that O2- is a crucial intermediate in the high quantum yield luminescence of luminol. J Free Radic Biol Med. 1986;2(2):107–110. doi: 10.1016/s0748-5514(86)80058-7. [DOI] [PubMed] [Google Scholar]
  23. Moreno J. J., Pryor W. A. Inactivation of alpha 1-proteinase inhibitor by peroxynitrite. Chem Res Toxicol. 1992 May-Jun;5(3):425–431. doi: 10.1021/tx00027a017. [DOI] [PubMed] [Google Scholar]
  24. Mulligan M. S., Hevel J. M., Marletta M. A., Ward P. A. Tissue injury caused by deposition of immune complexes is L-arginine dependent. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6338–6342. doi: 10.1073/pnas.88.14.6338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mulligan M. S., Warren J. S., Smith C. W., Anderson D. C., Yeh C. G., Rudolph A. R., Ward P. A. Lung injury after deposition of IgA immune complexes. Requirements for CD18 and L-arginine. J Immunol. 1992 May 15;148(10):3086–3092. [PubMed] [Google Scholar]
  26. Radi R. A., Rubbo H., Prodanov E. Comparison of the effects of superoxide dismutase and cytochrome c on luminol chemiluminescence produced by xanthine oxidase-catalyzed reactions. Biochim Biophys Acta. 1989 Jan 19;994(1):89–93. doi: 10.1016/0167-4838(89)90066-6. [DOI] [PubMed] [Google Scholar]
  27. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem. 1991 Mar 5;266(7):4244–4250. [PubMed] [Google Scholar]
  28. Radi R., Beckman J. S., Bush K. M., Freeman B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys. 1991 Aug 1;288(2):481–487. doi: 10.1016/0003-9861(91)90224-7. [DOI] [PubMed] [Google Scholar]
  29. Radi R., Rubbo H., Thomson L., Prodanov E. Luminol chemiluminescence using xanthine and hypoxanthine as xanthine oxidase substrates. Free Radic Biol Med. 1990;8(2):121–126. doi: 10.1016/0891-5849(90)90084-v. [DOI] [PubMed] [Google Scholar]
  30. Radi R., Thomson L., Rubbo H., Prodanov E. Cytochrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch Biochem Biophys. 1991 Jul;288(1):112–117. doi: 10.1016/0003-9861(91)90171-e. [DOI] [PubMed] [Google Scholar]
  31. Rosen G. M., Freeman B. A. Detection of superoxide generated by endothelial cells. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7269–7273. doi: 10.1073/pnas.81.23.7269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Saran M., Michel C., Bors W. Reaction of NO with O2-. implications for the action of endothelium-derived relaxing factor (EDRF). Free Radic Res Commun. 1990;10(4-5):221–226. doi: 10.3109/10715769009149890. [DOI] [PubMed] [Google Scholar]
  33. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thorpe G. H., Kricka L. J. Enhanced chemiluminescent reactions catalyzed by horseradish peroxidase. Methods Enzymol. 1986;133:331–353. doi: 10.1016/0076-6879(86)33078-7. [DOI] [PubMed] [Google Scholar]
  35. Valentine J. S., Miksztal A. R., Sawyer D. T. Methods for the study of superoxide chemistry in nonaqueous solutions. Methods Enzymol. 1984;105:71–81. doi: 10.1016/s0076-6879(84)05010-2. [DOI] [PubMed] [Google Scholar]
  36. Wagner D. A., Young V. R., Tannenbaum S. R. Mammalian nitrate biosynthesis: incorporation of 15NH3 into nitrate is enhanced by endotoxin treatment. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4518–4521. doi: 10.1073/pnas.80.14.4518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wang J. F., Komarov P., Sies H., de Groot H. Contribution of nitric oxide synthase to luminol-dependent chemiluminescence generated by phorbol-ester-activated Kupffer cells. Biochem J. 1991 Oct 1;279(Pt 1):311–314. doi: 10.1042/bj2790311. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES