Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jun 1;284(Pt 2):305–312. doi: 10.1042/bj2840305

Localization of gastric peroxidase and its inhibition by mercaptomethylimidazole, an inducer of gastric acid secretion.

U Bandyopadhyay 1, D K Bhattacharyya 1, R Chatterjee 1, R K Banerjee 1
PMCID: PMC1132638  PMID: 1318028

Abstract

Mercaptomethylimidazole (MMI) is a potent inducer of gastric acid secretion which is associated with significant inhibition of peroxidase activity of rat gastric mucosa in vivo. A time-dependent increase in acid secretion correlates well with time-dependent decrease in the peroxidase activity. In a chamber experiment in vitro using isolated gastric mucosa, MMI stimulates acid secretion, showing an almost linear response up to 600 microM. The time-dependent increase in acid secretion is also correlated with time-dependent inhibition of the peroxidase activity. This effect is not mediated through oxidation of MMI by flavin-containing mono-oxygenase, which is absent from gastric mucosa. The peroxidase has been localized mainly in parietal cells isolated and purified from gastric mucosa by controlled digestion with collagenase followed by Percoll-density-gradient centrifugation. Peroxidase activity was further localized in the outer membrane of the purified mitochondria of the parietal cell by some membrane-impermeant reagents, indicating outward orientation of the enzyme. MMI can inhibit the peroxidase activity of both the parietal cell and its mitochondria in a concentration-dependent manner. The possible involvement of the parietal-cell peroxidase-H2O2 system in MMI-induced acid secretion may be suggested.

Full text

PDF
308

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai I., Hirose H., Usuki C., Muramatsu M., Aihara H. Effects of indomethacin and cold-stress on gastric acid secretion and ulceration. The effects of anti-acid secretory agents in rats. Res Commun Chem Pathol Pharmacol. 1987 Sep;57(3):313–327. [PubMed] [Google Scholar]
  2. Armstrong C. P., Blower A. L. Non-steroidal anti-inflammatory drugs and life threatening complications of peptic ulceration. Gut. 1987 May;28(5):527–532. doi: 10.1136/gut.28.5.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banerjee R. K., Bose A. K., Chakraborty T. K., De S. K., Datta A. G. Peroxidase-catalysed iodotyrosine formation in dispersed cells of mouse extrathyroidal tissues. J Endocrinol. 1985 Aug;106(2):159–165. doi: 10.1677/joe.0.1060159. [DOI] [PubMed] [Google Scholar]
  4. Banerjee R. K., Bose A. K., Chakravartty T. K., Datta A. G. Solubilisation & properties of mitochondrial peroxidase from mouse gastric mucosa. Indian J Biochem Biophys. 1982 Oct;19(5):324–329. [PubMed] [Google Scholar]
  5. Banerjee R. K. Nonsteroidal anti-inflammatory drugs inhibit gastric peroxidase activity. Biochim Biophys Acta. 1990 Jun 20;1034(3):275–280. doi: 10.1016/0304-4165(90)90050-7. [DOI] [PubMed] [Google Scholar]
  6. Berg H. C. Sulfanilic acid diazonium salt: a label for the outside of the human erythrocyte membrane. Biochim Biophys Acta. 1969 Jun 3;183(1):65–78. doi: 10.1016/0005-2736(69)90130-8. [DOI] [PubMed] [Google Scholar]
  7. Berglindh T., Helander H. F., Obrink K. J. Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta Physiol Scand. 1976 Aug;97(4):401–414. doi: 10.1111/j.1748-1716.1976.tb10281.x. [DOI] [PubMed] [Google Scholar]
  8. Bhattacharjee M., Bose A. K., Banerjee R. K. Histamine H2-receptor mediated stimulation of gastric acid secretion by mercaptomethylimidazole. Biochem Pharmacol. 1989 Mar 15;38(6):907–914. doi: 10.1016/0006-2952(89)90279-7. [DOI] [PubMed] [Google Scholar]
  9. DePierre J. W., Karnovsky M. L. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphatase, adenosine triphosphatase, and -p-nitrophenyl phosphates. J Biol Chem. 1974 Nov 25;249(22):7111–7120. [PubMed] [Google Scholar]
  10. De S. K., Banerjee R. K. Glucocorticoid effects on gastric peroxidase activity. Biochim Biophys Acta. 1984 Aug 21;800(3):233–241. doi: 10.1016/0304-4165(84)90401-x. [DOI] [PubMed] [Google Scholar]
  11. De S. K., Banerjee R. K. Purification, characterization and origin of rat gastric peroxidase. Eur J Biochem. 1986 Oct 15;160(2):319–325. doi: 10.1111/j.1432-1033.1986.tb09974.x. [DOI] [PubMed] [Google Scholar]
  12. De S. K., De M., Banerjee R. K. Localization and origin of the intestinal peroxidase--effect of adrenal glucocorticoids. J Steroid Biochem. 1986 Feb;24(2):629–635. doi: 10.1016/0022-4731(86)90130-5. [DOI] [PubMed] [Google Scholar]
  13. Ecknauer R., Dial E., Thompson W. J., Johnson L. R., Rosenfeld G. C. Isolated rat gastric parietal cells: cholinergic response and pharmacology. Life Sci. 1981 Feb 9;28(6):609–621. doi: 10.1016/0024-3205(81)90124-7. [DOI] [PubMed] [Google Scholar]
  14. Engler H., Taurog A., Dorris M. L. Preferential inhibition of thyroxine and 3,5,3'-triiodothyronine formation by propylthiouracil and methylmercaptoimidazole in thyroid peroxidase-catalyzed iodination of thyroglobulin. Endocrinology. 1982 Jan;110(1):190–197. doi: 10.1210/endo-110-1-190. [DOI] [PubMed] [Google Scholar]
  15. Foerder C. A., Klebanoff S. J., Shapiro B. M. Hydrogen peroxide production, chemiluminescence, and the respiratory burst of fertilization: interrelated events in early sea urchin development. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3183–3187. doi: 10.1073/pnas.75.7.3183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Halter F., Müllener C., Kohler B., Saner U., Smith G. M. Die Wirkung von Kortikosteroiden auf die Magensäuresekretion der Ratte. Vorläufige Mitteilung. Schweiz Med Wochenschr. 1971 May 22;101(20):755–756. [PubMed] [Google Scholar]
  17. Helander H. F., Sundell G. W. Ultrastructure of inhibited parietal cells in the rat. Gastroenterology. 1984 Nov;87(5):1064–1071. [PubMed] [Google Scholar]
  18. Ito S., Munro D. R., Schofield G. C. Morphology of the isolated mouse oxyntic cell and some physiological parameters. Gastroenterology. 1977 Oct;73(4 Pt 2):887–898. [PubMed] [Google Scholar]
  19. Ivey K. J. Mechanisms of nonsteroidal anti-inflammatory drug-induced gastric damage. Actions of therapeutic agents. Am J Med. 1988 Feb 22;84(2A):41–48. doi: 10.1016/0002-9343(88)90253-7. [DOI] [PubMed] [Google Scholar]
  20. Jakoby W. B., Ziegler D. M. The enzymes of detoxication. J Biol Chem. 1990 Dec 5;265(34):20715–20718. [PubMed] [Google Scholar]
  21. Jensen M. S., Bainton D. F. Temporal changes in pH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J Cell Biol. 1973 Feb;56(2):379–388. doi: 10.1083/jcb.56.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. KLEBANOFF S. J. INACTIVATION OF ESTROGEN BY RAT UTERINE PREPARATIONS. Endocrinology. 1965 Feb;76:301–311. doi: 10.1210/endo-76-2-301. [DOI] [PubMed] [Google Scholar]
  23. Kay E., Eddy E. M., Shapiro B. M. Assembly of the fertilization membrane of the sea urchin: isolation of a divalent cation-dependent intermediate and its crosslinking in vitro. Cell. 1982 Jul;29(3):867–875. doi: 10.1016/0092-8674(82)90448-2. [DOI] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. Lyttle C. R., Jellinck P. H. Metabolism of (4- 14 C)oestradiol by oestrogen-induced uterine peroxidase. Biochem J. 1972 Apr;127(3):481–487. doi: 10.1042/bj1270481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Michell R. H., Karnovsky M. J., Karnovsky M. L. The distributions of some granule-associated enzymes in guinea-pig polymorphonuclear leucocytes. Biochem J. 1970 Jan;116(2):207–216. doi: 10.1042/bj1160207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morrison M., Allen P. Z. Lactoperoxidase: identification and isolation from Harderian and lacrimal glands. Science. 1966 Jun 17;152(3729):1626–1628. doi: 10.1126/science.152.3729.1626. [DOI] [PubMed] [Google Scholar]
  28. Ohtaki S., Nakagawa H., Nakamura M., Yamazaki I. Reactions of purified hog thyroid peroxidase with H2O2, tyrosine, and methylmercaptoimidazole (goitrogen) in comparison with bovine lactoperoxidase. J Biol Chem. 1982 Jan 25;257(2):761–766. [PubMed] [Google Scholar]
  29. Poulsen L. L., Hyslop R. M., Ziegler D. M. S-oxidation of thioureylenes catalyzed by a microsomal flavoprotein mixed-function oxidase. Biochem Pharmacol. 1974 Dec 15;23(24):3431–3440. doi: 10.1016/0006-2952(74)90346-3. [DOI] [PubMed] [Google Scholar]
  30. ROBERT A., NEZAMIS J. E. Ulcerogenic property of steroids. Proc Soc Exp Biol Med. 1958 Nov;99(2):443–447. doi: 10.3181/00379727-99-24378. [DOI] [PubMed] [Google Scholar]
  31. Reeves J. J., Stables R. Effects of indomethacin, piroxicam and selected prostanoids on gastric acid secretion by the rat isolated gastric mucosa. Br J Pharmacol. 1985 Nov;86(3):677–684. doi: 10.1111/j.1476-5381.1985.tb08945.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Romrell L. J., Coppe M. R., Munro D. R., Ito S. Isolation and separation of highly enriched fractions of viable mouse gastric parietal cells by velocity sedimentation. J Cell Biol. 1975 May;65(2):428–438. doi: 10.1083/jcb.65.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosenfeld G. C. Isolated parietal cells: adrenergic response and pharmacology. J Pharmacol Exp Ther. 1984 Jun;229(3):763–767. [PubMed] [Google Scholar]
  34. SBARRA A. J., KARNOVSKY M. L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. J Biol Chem. 1959 Jun;234(6):1355–1362. [PubMed] [Google Scholar]
  35. SCHLAMOWITZ M., PETERSON L. U. Studies on the optimum pH for the action of pepsin on "native" and denatured bovine serum albumin and bovine hemoglobin. J Biol Chem. 1959 Dec;234:3137–3145. [PubMed] [Google Scholar]
  36. SINGER T. P., KEARNEY E. B. Determination of succinic dehydrogenase activity. Methods Biochem Anal. 1957;4:307–333. doi: 10.1002/9780470110201.ch9. [DOI] [PubMed] [Google Scholar]
  37. Slungaard A., Mahoney J. R., Jr Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids. Implications for cytotoxicity. J Biol Chem. 1991 Mar 15;266(8):4903–4910. [PubMed] [Google Scholar]
  38. Tai A., Burton R. C., Warner N. L. Differential natural killer cell reactivity against T cell lymphomas by cells from normal or stimulated mice. J Immunol. 1980 Apr;124(4):1705–1711. [PubMed] [Google Scholar]
  39. Thompson W. J., Chang L. K., Rosenfeld G. C. Histamine regulation of adenylyl cyclase of enriched rat gastric parietal cells. Am J Physiol. 1981 Jan;240(1):G76–G84. doi: 10.1152/ajpgi.1981.240.1.G76. [DOI] [PubMed] [Google Scholar]
  40. Turner E., Somers C. E., Shapiro B. M. The relationship between a novel NAD(P)H oxidase activity of ovoperoxidase and the CN- -resistant respiratory burst that follows fertilization of sea urchin eggs. J Biol Chem. 1985 Oct 25;260(24):13163–13171. [PubMed] [Google Scholar]
  41. WALDER A. I., LUNSETH J. B. A technic for separation of the cells of the gastric mucosa. Proc Soc Exp Biol Med. 1963 Feb;112:494–496. doi: 10.3181/00379727-112-28086. [DOI] [PubMed] [Google Scholar]
  42. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  43. Ziegler D. M. Flavin-containing monooxygenases: enzymes adapted for multisubstrate specificity. Trends Pharmacol Sci. 1990 Aug;11(8):321–324. doi: 10.1016/0165-6147(90)90235-z. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES