Abstract
A high-abundance NADH-oxidizing enzyme (NADH: acceptor oxidoreductase, EC 1.6.99.3) has been identified and isolated from a range of anaerobic extreme thermophiles, including strains of Clostridium thermohydrosulfuricum and Thermoanaerobium brockii. By use of a pseudo-affinity salt-promoted adsorbent, a nearly pure sample was obtained in one step; remaining impurities were separated by ion-exchange. The fully active purified enzyme contains FAD (two molecules per subunit of 75-78 kDa) and iron-sulphur, and is hexameric in its most active form. The reaction with oxygen is a one- or two-electron transfer to produce superoxide radical and H2O2; other acceptors include tetrazolium salts, dichlorophenol-indophenol, menadione and ferricyanide. The role of the enzyme is not clear; it was found not to be NAD:ferredoxin oxidoreductase, which is a major NADH-utilizing enzyme in these organisms.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson T., Hammond P. M., Hartwell R. D., Hughes P., Scawen M. D., Sherwood R. F., Small D. A., Bruton C. J., Harvey M. J., Lowe C. R. Triazine-dye affinity; chromatography. Biochem Soc Trans. 1981 Aug;9(4):290–293. doi: 10.1042/bst0090290. [DOI] [PubMed] [Google Scholar]
- Baret A., Fert V., Aumaille J. Application of a long-term enhanced xanthine oxidase-induced luminescence in solid-phase immunoassays. Anal Biochem. 1990 May 15;187(1):20–26. doi: 10.1016/0003-2697(90)90411-2. [DOI] [PubMed] [Google Scholar]
- Blusson H., Petitdemange H., Gay R. A new, fast, and sensitive assay for NADH--ferredoxin oxidoreductase detection in clostridia. Anal Biochem. 1981 Jan 1;110(1):176–181. doi: 10.1016/0003-2697(81)90132-9. [DOI] [PubMed] [Google Scholar]
- Cocco D., Rinaldi A., Savini I., Cooper J. M., Bannister J. V. NADH oxidase from the extreme thermophile Thermus aquaticus YT-1. Purification and characterisation. Eur J Biochem. 1988 Jun 1;174(2):267–271. doi: 10.1111/j.1432-1033.1988.tb14093.x. [DOI] [PubMed] [Google Scholar]
- DOEG K. A., ZIEGLER D. M. Simplified methods for the estimation of iron in mitochondria and submitochondrial fractions. Arch Biochem Biophys. 1962 Apr;97:37–40. doi: 10.1016/0003-9861(62)90041-3. [DOI] [PubMed] [Google Scholar]
- DOLIN M. I. Oxidation of reduced diphosphopyridine nucleotide by Clostridium perfringens. I. Relation of peroxide to the overall reaction. J Bacteriol. 1959 Apr;77(4):383–392. doi: 10.1128/jb.77.4.383-392.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jungermann K., Thauer R. K., Leimenstoll G., Decker K. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim Biophys Acta. 1973 May 30;305(2):268–280. doi: 10.1016/0005-2728(73)90175-8. [DOI] [PubMed] [Google Scholar]
- Koike K., Kobayashi T., Ito S., Saitoh M. Purification and characterization of NADH oxidase from a strain of Leuconostoc mesenteroides. J Biochem. 1985 May;97(5):1279–1288. doi: 10.1093/oxfordjournals.jbchem.a135179. [DOI] [PubMed] [Google Scholar]
- Lamed R., Zeikus J. G. Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol. 1980 Nov;144(2):569–578. doi: 10.1128/jb.144.2.569-578.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCord J. M., Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969 Nov 25;244(22):6049–6055. [PubMed] [Google Scholar]
- Morgan D. J., Moodley I., Cundell D. R., Sheinman B. D., Smart W., Davies R. J. Circulating histamine and neutrophil chemotactic activity during allergen-induced asthma: the effect of inhaled antihistamines and anti-allergic compounds. Clin Sci (Lond) 1985 Jul;69(1):63–69. doi: 10.1042/cs0690063. [DOI] [PubMed] [Google Scholar]
- Saeki Y., Nozaki M., Matsumoto K. Purification and properties of NADH oxidase from Bacillus megaterium. J Biochem. 1985 Dec;98(6):1433–1440. doi: 10.1093/oxfordjournals.jbchem.a135411. [DOI] [PubMed] [Google Scholar]
- Schmidt H. L., Stöcklein W., Danzer J., Kirch P., Limbach B. Isolation and properties of an H2O-forming NADH oxidase from Streptococcus faecalis. Eur J Biochem. 1986 Apr 1;156(1):149–155. doi: 10.1111/j.1432-1033.1986.tb09560.x. [DOI] [PubMed] [Google Scholar]
- Scopes R. K., Porath J. Differential salt-promoted chromatography for protein purification. Bioseparation. 1990;1(1):3–7. [PubMed] [Google Scholar]
- Scopes R. K. Strategies for enzyme isolation using dye-ligand and related adsorbents. J Chromatogr. 1986 Apr 11;376:131–140. doi: 10.1016/s0378-4347(00)80830-0. [DOI] [PubMed] [Google Scholar]
- Thurman R. G., Ley H. G., Scholz R. Hepatic microsomal ethanol oxidation. Hydrogen peroxide formation and the role of catalase. Eur J Biochem. 1972 Feb;25(3):420–430. doi: 10.1111/j.1432-1033.1972.tb01711.x. [DOI] [PubMed] [Google Scholar]
- Weintraub S. B., Frankel F. R. Identification of the T4rIIB gene product as a membrane protein. J Mol Biol. 1972 Oct 14;70(3):589–615. doi: 10.1016/0022-2836(72)90561-x. [DOI] [PubMed] [Google Scholar]