Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 May 15;284(Pt 1):115–122. doi: 10.1042/bj2840115

Phosphocreatine-dependent protein phosphorylation in rat skeletal muscle.

M Ouellet 1, E A Shoubridge 1
PMCID: PMC1132705  PMID: 1318016

Abstract

Phosphocreatine (PCr) was found to alter the phosphorylation state of two proteins of apparent molecular masses 18 and 29 kDa in dialysed cell-free extracts of rat skeletal muscle in the presence of [gamma-32P]ATP. The 29 kDa protein was identified as phosphoglycerate mutase (PGM), phosphorylated at the active-site histidine residue by 2,3-bisphosphoglycerate (2,3-biPG). 2,3-biPG labelling from [gamma-32P]ATP occurred through the concerted action of phosphoglycerate kinase and 2,3-bisphosphoglycerate mutase. PCr-dependent labelling, which required creatine kinase, resulted from a shift in the phosphoglycerate kinase equilibrium towards 1,3-bisphosphoglycerate (1,3-biPG) synthesis, ultimately resulting in an increase in available [2-32P]2,3-biPG. The maximal catalytic activity of PGM was unaffected by PCr. The 18 kDa protein was transiently phosphorylated at a histidine residue, probably by 1,3-biPG. No proteins of this monomeric molecular mass are known to bind 1,3-biPG, suggesting that the 18 kDa protein is an undescribed phosphoenzyme intermediate. Previous observations of 2- and 3-phosphoglycerate-dependent protein phosphorylation in cytosolic extracts [Ueda & Plagens (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1229-1233; Pek, Usami, Bilir, Fischer-Bovenkerk & Ueda (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4294-4298], attributed to the action of novel kinases, are likely to represent phosphoenzyme intermediates labelled by bisphosphorylated metabolites in a similar manner.

Full text

PDF
115

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrés V., Cussó R., Carreras J. Distribution and developmental transition of phosphoglycerate mutase and creatine phosphokinase isozymes in rat muscles of different fiber-type composition. Differentiation. 1989 Jul;41(1):72–77. doi: 10.1111/j.1432-0436.1989.tb00734.x. [DOI] [PubMed] [Google Scholar]
  2. Annesley T. M., Walker J. B. Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine. J Biol Chem. 1980 May 10;255(9):3924–3930. [PubMed] [Google Scholar]
  3. Bartrons R., Carreras M., Climent F., Carreras J. Inhibition of phosphoglucomutase by fructose 2,6-bisphosphate. Biochim Biophys Acta. 1985 Sep 27;842(1):52–55. doi: 10.1016/0304-4165(85)90292-2. [DOI] [PubMed] [Google Scholar]
  4. Carreras J., Climent F., Bartrons R., Pons G. Effect of vanadate on the formation and stability of the phosphoenzyme forms of 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and of phosphoglucomutase. Biochim Biophys Acta. 1982 Jul 26;705(2):238–242. doi: 10.1016/0167-4838(82)90183-2. [DOI] [PubMed] [Google Scholar]
  5. Chevli R., Fitch C. D. beta-Guanidinopropionate and phosphorylated beta-guanidinopropionate as substrates for creatine kinase. Biochem Med. 1979 Apr;21(2):162–167. doi: 10.1016/0006-2944(79)90068-1. [DOI] [PubMed] [Google Scholar]
  6. Chiba H., Sasaki R. Functions, of 2,3-bisphosphoglycerate and its metabolism. Curr Top Cell Regul. 1978;14:75–116. doi: 10.1016/b978-0-12-152814-0.50007-1. [DOI] [PubMed] [Google Scholar]
  7. Dworkin M. B., Dworkin-Rastl E. Metabolic regulation during early frog development. Identification of proteins labeled by 32P-glycolytic intermediates. J Biol Chem. 1987 Dec 15;262(35):17038–17045. [PubMed] [Google Scholar]
  8. Fitch C. D., Chevli R., Jellinek M. Phosphocreatine does not inhibit rabbit muscle phosphofructokinase or pyruvate kinase. J Biol Chem. 1979 Nov 25;254(22):11357–11359. [PubMed] [Google Scholar]
  9. Fitch C. D., Jellinek M., Fitts R. H., Baldwin K. M., Holloszy J. O. Phosphorylated beta-guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am J Physiol. 1975 Apr;228(4):1123–1125. doi: 10.1152/ajplegacy.1975.228.4.1123. [DOI] [PubMed] [Google Scholar]
  10. Fitch C. D., Jellinek M., Mueller E. J. Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem. 1974 Feb 25;249(4):1060–1063. [PubMed] [Google Scholar]
  11. Fothergill-Gilmore L. A., Watson H. C. The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol. 1989;62:227–313. doi: 10.1002/9780470123089.ch6. [DOI] [PubMed] [Google Scholar]
  12. Grisolia S., Cleland W. W. Influence of salt, substrate, and cofactor concentrations on the kinetic and mechanistic behavior of phosphoglycerate mutase. Biochemistry. 1968 Mar;7(3):1115–1121. doi: 10.1021/bi00843a032. [DOI] [PubMed] [Google Scholar]
  13. Khandelwal R. L., Mattoo R. L., Waygood E. B. Phosphoenolpyruvate-dependent protein kinase activity in rat skeletal muscle. FEBS Lett. 1983 Oct 3;162(1):127–132. doi: 10.1016/0014-5793(83)81063-1. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Mainwood G. W., Alward M., Eiselt B. Contractile characteristics of creatine-depleted rat diaphragm. Can J Physiol Pharmacol. 1982 Feb;60(2):120–127. doi: 10.1139/y82-020. [DOI] [PubMed] [Google Scholar]
  16. Mainwood G. W., Totosy De Zepetnek J. Post-tetanic responses in creatine-depleted rat EDL muscle. Muscle Nerve. 1985 Nov-Dec;8(9):774–782. doi: 10.1002/mus.880080906. [DOI] [PubMed] [Google Scholar]
  17. Manning D. R., Stull J. T. Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am J Physiol. 1982 Mar;242(3):C234–C241. doi: 10.1152/ajpcell.1982.242.3.C234. [DOI] [PubMed] [Google Scholar]
  18. Meyer R. A., Brown T. R., Krilowicz B. L., Kushmerick M. J. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol. 1986 Feb;250(2 Pt 1):C264–C274. doi: 10.1152/ajpcell.1986.250.2.C264. [DOI] [PubMed] [Google Scholar]
  19. Moerland T. S., Wolf N. G., Kushmerick M. J. Administration of a creatine analogue induces isomyosin transitions in muscle. Am J Physiol. 1989 Oct;257(4 Pt 1):C810–C816. doi: 10.1152/ajpcell.1989.257.4.C810. [DOI] [PubMed] [Google Scholar]
  20. Moore R. L., Stull J. T. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol. 1984 Nov;247(5 Pt 1):C462–C471. doi: 10.1152/ajpcell.1984.247.5.C462. [DOI] [PubMed] [Google Scholar]
  21. Morino H., Fischer-Bovenkerk C., Kish P. E., Ueda T. Phosphoglycerates and protein phosphorylation: identification of a protein substrate as glucose-1,6-bisphosphate synthetase. J Neurochem. 1991 Mar;56(3):1049–1057. doi: 10.1111/j.1471-4159.1991.tb02028.x. [DOI] [PubMed] [Google Scholar]
  22. Narita H., Utsumi S., Ikura K., Sasaki R., Chiba H. Comparative studies of the enzymes involved in 2,3-bisphosphoglycerate metabolism of rabbit erythrocytes and muscle cells. Int J Biochem. 1979;10(1):25–38. doi: 10.1016/0020-711x(79)90135-6. [DOI] [PubMed] [Google Scholar]
  23. PIZER L. I. Properties of the phosphoprotein-phosphoglyceric mutase. J Biol Chem. 1960 Apr;235:895–901. [PubMed] [Google Scholar]
  24. Palmer B. M., Moore R. L. Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle. Am J Physiol. 1989 Nov;257(5 Pt 1):C1012–C1019. doi: 10.1152/ajpcell.1989.257.5.C1012. [DOI] [PubMed] [Google Scholar]
  25. Pek S. B., Usami M., Bilir N., Fischer-Bovenkerk C., Ueda T. Protein phosphorylation in pancreatic islets induced by 3-phosphoglycerate and 2-phosphoglycerate. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4294–4298. doi: 10.1073/pnas.87.11.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
  27. Pilkis S. J., Walderhaug M., Murray K., Beth A., Venkataramu S. D., Pilkis J., El-Maghrabi M. R. 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase from rat liver. J Biol Chem. 1983 May 25;258(10):6135–6141. [PubMed] [Google Scholar]
  28. Prehu M. O., Prehu C., Calvin M. C., Rosa R. Rabbit M type phosphoglyceromutase: comparative effects of two thiol reagents antibody reaction and hybridization studies. Comp Biochem Physiol B. 1988;89(2):257–262. doi: 10.1016/0305-0491(88)90220-9. [DOI] [PubMed] [Google Scholar]
  29. Rose Z. B., Dube S. Phosphoglycerate mutase. Kinetics and effects of salts on the mutase and bisphosphoglycerate phosphatase activities of the enzyme from chicken breast muscle. J Biol Chem. 1978 Dec 10;253(23):8583–8592. [PubMed] [Google Scholar]
  30. Rose Z. B., Dube S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase. J Biol Chem. 1976 Aug 25;251(16):4817–4822. [PubMed] [Google Scholar]
  31. Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
  32. Shoubridge E. A., Challiss R. A., Hayes D. J., Radda G. K. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochem J. 1985 Nov 15;232(1):125–131. doi: 10.1042/bj2320125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shoubridge E. A., Radda G. K. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Am J Physiol. 1987 May;252(5 Pt 1):C532–C542. doi: 10.1152/ajpcell.1987.252.5.C532. [DOI] [PubMed] [Google Scholar]
  34. Stankiewicz P. J., Gresser M. J., Tracey A. S., Hass L. F. 2,3-diphosphoglycerate phosphatase activity of phosphoglycerate mutase: stimulation by vanadate and phosphate. Biochemistry. 1987 Mar 10;26(5):1264–1269. doi: 10.1021/bi00379a010. [DOI] [PubMed] [Google Scholar]
  35. Stankiewicz P. J., Hass L. F. The catalytic bimodality of mammalian phosphoglycerate mutase. J Biol Chem. 1986 Sep 25;261(27):12715–12721. [PubMed] [Google Scholar]
  36. Tauler A., el-Maghrabi M. R., Pilkis S. J. Functional homology of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, phosphoglycerate mutase, and 2,3-bisphosphoglycerate mutase. J Biol Chem. 1987 Dec 15;262(35):16808–16815. [PubMed] [Google Scholar]
  37. Ueda T., Plagens D. G. 3-Phosphoglycerate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1229–1233. doi: 10.1073/pnas.84.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Walaas S. I., Nairn A. C., Greengard P. Regional distribution of calcium- and cyclic adenosine 3':5'-monophosphate-regulated protein phosphorylation systems in mammalian brain. I. Particulate systems. J Neurosci. 1983 Feb;3(2):291–301. doi: 10.1523/JNEUROSCI.03-02-00291.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wheeler T. J., Lowenstein J. M. Creatine phosphate inhibition of adenylate deaminase is mainly due to pyrophosphate. J Biol Chem. 1979 Mar 10;254(5):1484–1486. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES