Abstract
Phosphocreatine (PCr) was found to alter the phosphorylation state of two proteins of apparent molecular masses 18 and 29 kDa in dialysed cell-free extracts of rat skeletal muscle in the presence of [gamma-32P]ATP. The 29 kDa protein was identified as phosphoglycerate mutase (PGM), phosphorylated at the active-site histidine residue by 2,3-bisphosphoglycerate (2,3-biPG). 2,3-biPG labelling from [gamma-32P]ATP occurred through the concerted action of phosphoglycerate kinase and 2,3-bisphosphoglycerate mutase. PCr-dependent labelling, which required creatine kinase, resulted from a shift in the phosphoglycerate kinase equilibrium towards 1,3-bisphosphoglycerate (1,3-biPG) synthesis, ultimately resulting in an increase in available [2-32P]2,3-biPG. The maximal catalytic activity of PGM was unaffected by PCr. The 18 kDa protein was transiently phosphorylated at a histidine residue, probably by 1,3-biPG. No proteins of this monomeric molecular mass are known to bind 1,3-biPG, suggesting that the 18 kDa protein is an undescribed phosphoenzyme intermediate. Previous observations of 2- and 3-phosphoglycerate-dependent protein phosphorylation in cytosolic extracts [Ueda & Plagens (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 1229-1233; Pek, Usami, Bilir, Fischer-Bovenkerk & Ueda (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4294-4298], attributed to the action of novel kinases, are likely to represent phosphoenzyme intermediates labelled by bisphosphorylated metabolites in a similar manner.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrés V., Cussó R., Carreras J. Distribution and developmental transition of phosphoglycerate mutase and creatine phosphokinase isozymes in rat muscles of different fiber-type composition. Differentiation. 1989 Jul;41(1):72–77. doi: 10.1111/j.1432-0436.1989.tb00734.x. [DOI] [PubMed] [Google Scholar]
- Annesley T. M., Walker J. B. Energy metabolism of skeletal muscle containing cyclocreatine phosphate. Delay in onset of rigor mortis and decreased glycogenolysis in response to ischemia or epinephrine. J Biol Chem. 1980 May 10;255(9):3924–3930. [PubMed] [Google Scholar]
- Bartrons R., Carreras M., Climent F., Carreras J. Inhibition of phosphoglucomutase by fructose 2,6-bisphosphate. Biochim Biophys Acta. 1985 Sep 27;842(1):52–55. doi: 10.1016/0304-4165(85)90292-2. [DOI] [PubMed] [Google Scholar]
- Carreras J., Climent F., Bartrons R., Pons G. Effect of vanadate on the formation and stability of the phosphoenzyme forms of 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and of phosphoglucomutase. Biochim Biophys Acta. 1982 Jul 26;705(2):238–242. doi: 10.1016/0167-4838(82)90183-2. [DOI] [PubMed] [Google Scholar]
- Chevli R., Fitch C. D. beta-Guanidinopropionate and phosphorylated beta-guanidinopropionate as substrates for creatine kinase. Biochem Med. 1979 Apr;21(2):162–167. doi: 10.1016/0006-2944(79)90068-1. [DOI] [PubMed] [Google Scholar]
- Chiba H., Sasaki R. Functions, of 2,3-bisphosphoglycerate and its metabolism. Curr Top Cell Regul. 1978;14:75–116. doi: 10.1016/b978-0-12-152814-0.50007-1. [DOI] [PubMed] [Google Scholar]
- Dworkin M. B., Dworkin-Rastl E. Metabolic regulation during early frog development. Identification of proteins labeled by 32P-glycolytic intermediates. J Biol Chem. 1987 Dec 15;262(35):17038–17045. [PubMed] [Google Scholar]
- Fitch C. D., Chevli R., Jellinek M. Phosphocreatine does not inhibit rabbit muscle phosphofructokinase or pyruvate kinase. J Biol Chem. 1979 Nov 25;254(22):11357–11359. [PubMed] [Google Scholar]
- Fitch C. D., Jellinek M., Fitts R. H., Baldwin K. M., Holloszy J. O. Phosphorylated beta-guanidinopropionate as a substitute for phosphocreatine in rat muscle. Am J Physiol. 1975 Apr;228(4):1123–1125. doi: 10.1152/ajplegacy.1975.228.4.1123. [DOI] [PubMed] [Google Scholar]
- Fitch C. D., Jellinek M., Mueller E. J. Experimental depletion of creatine and phosphocreatine from skeletal muscle. J Biol Chem. 1974 Feb 25;249(4):1060–1063. [PubMed] [Google Scholar]
- Fothergill-Gilmore L. A., Watson H. C. The phosphoglycerate mutases. Adv Enzymol Relat Areas Mol Biol. 1989;62:227–313. doi: 10.1002/9780470123089.ch6. [DOI] [PubMed] [Google Scholar]
- Grisolia S., Cleland W. W. Influence of salt, substrate, and cofactor concentrations on the kinetic and mechanistic behavior of phosphoglycerate mutase. Biochemistry. 1968 Mar;7(3):1115–1121. doi: 10.1021/bi00843a032. [DOI] [PubMed] [Google Scholar]
- Khandelwal R. L., Mattoo R. L., Waygood E. B. Phosphoenolpyruvate-dependent protein kinase activity in rat skeletal muscle. FEBS Lett. 1983 Oct 3;162(1):127–132. doi: 10.1016/0014-5793(83)81063-1. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Mainwood G. W., Alward M., Eiselt B. Contractile characteristics of creatine-depleted rat diaphragm. Can J Physiol Pharmacol. 1982 Feb;60(2):120–127. doi: 10.1139/y82-020. [DOI] [PubMed] [Google Scholar]
- Mainwood G. W., Totosy De Zepetnek J. Post-tetanic responses in creatine-depleted rat EDL muscle. Muscle Nerve. 1985 Nov-Dec;8(9):774–782. doi: 10.1002/mus.880080906. [DOI] [PubMed] [Google Scholar]
- Manning D. R., Stull J. T. Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle. Am J Physiol. 1982 Mar;242(3):C234–C241. doi: 10.1152/ajpcell.1982.242.3.C234. [DOI] [PubMed] [Google Scholar]
- Meyer R. A., Brown T. R., Krilowicz B. L., Kushmerick M. J. Phosphagen and intracellular pH changes during contraction of creatine-depleted rat muscle. Am J Physiol. 1986 Feb;250(2 Pt 1):C264–C274. doi: 10.1152/ajpcell.1986.250.2.C264. [DOI] [PubMed] [Google Scholar]
- Moerland T. S., Wolf N. G., Kushmerick M. J. Administration of a creatine analogue induces isomyosin transitions in muscle. Am J Physiol. 1989 Oct;257(4 Pt 1):C810–C816. doi: 10.1152/ajpcell.1989.257.4.C810. [DOI] [PubMed] [Google Scholar]
- Moore R. L., Stull J. T. Myosin light chain phosphorylation in fast and slow skeletal muscles in situ. Am J Physiol. 1984 Nov;247(5 Pt 1):C462–C471. doi: 10.1152/ajpcell.1984.247.5.C462. [DOI] [PubMed] [Google Scholar]
- Morino H., Fischer-Bovenkerk C., Kish P. E., Ueda T. Phosphoglycerates and protein phosphorylation: identification of a protein substrate as glucose-1,6-bisphosphate synthetase. J Neurochem. 1991 Mar;56(3):1049–1057. doi: 10.1111/j.1471-4159.1991.tb02028.x. [DOI] [PubMed] [Google Scholar]
- Narita H., Utsumi S., Ikura K., Sasaki R., Chiba H. Comparative studies of the enzymes involved in 2,3-bisphosphoglycerate metabolism of rabbit erythrocytes and muscle cells. Int J Biochem. 1979;10(1):25–38. doi: 10.1016/0020-711x(79)90135-6. [DOI] [PubMed] [Google Scholar]
- PIZER L. I. Properties of the phosphoprotein-phosphoglyceric mutase. J Biol Chem. 1960 Apr;235:895–901. [PubMed] [Google Scholar]
- Palmer B. M., Moore R. L. Myosin light chain phosphorylation and tension potentiation in mouse skeletal muscle. Am J Physiol. 1989 Nov;257(5 Pt 1):C1012–C1019. doi: 10.1152/ajpcell.1989.257.5.C1012. [DOI] [PubMed] [Google Scholar]
- Pek S. B., Usami M., Bilir N., Fischer-Bovenkerk C., Ueda T. Protein phosphorylation in pancreatic islets induced by 3-phosphoglycerate and 2-phosphoglycerate. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4294–4298. doi: 10.1073/pnas.87.11.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pette D., Vrbová G. Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve. 1985 Oct;8(8):676–689. doi: 10.1002/mus.880080810. [DOI] [PubMed] [Google Scholar]
- Pilkis S. J., Walderhaug M., Murray K., Beth A., Venkataramu S. D., Pilkis J., El-Maghrabi M. R. 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase from rat liver. J Biol Chem. 1983 May 25;258(10):6135–6141. [PubMed] [Google Scholar]
- Prehu M. O., Prehu C., Calvin M. C., Rosa R. Rabbit M type phosphoglyceromutase: comparative effects of two thiol reagents antibody reaction and hybridization studies. Comp Biochem Physiol B. 1988;89(2):257–262. doi: 10.1016/0305-0491(88)90220-9. [DOI] [PubMed] [Google Scholar]
- Rose Z. B., Dube S. Phosphoglycerate mutase. Kinetics and effects of salts on the mutase and bisphosphoglycerate phosphatase activities of the enzyme from chicken breast muscle. J Biol Chem. 1978 Dec 10;253(23):8583–8592. [PubMed] [Google Scholar]
- Rose Z. B., Dube S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase. J Biol Chem. 1976 Aug 25;251(16):4817–4822. [PubMed] [Google Scholar]
- Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
- Shoubridge E. A., Challiss R. A., Hayes D. J., Radda G. K. Biochemical adaptation in the skeletal muscle of rats depleted of creatine with the substrate analogue beta-guanidinopropionic acid. Biochem J. 1985 Nov 15;232(1):125–131. doi: 10.1042/bj2320125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shoubridge E. A., Radda G. K. A gated 31P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine. Am J Physiol. 1987 May;252(5 Pt 1):C532–C542. doi: 10.1152/ajpcell.1987.252.5.C532. [DOI] [PubMed] [Google Scholar]
- Stankiewicz P. J., Gresser M. J., Tracey A. S., Hass L. F. 2,3-diphosphoglycerate phosphatase activity of phosphoglycerate mutase: stimulation by vanadate and phosphate. Biochemistry. 1987 Mar 10;26(5):1264–1269. doi: 10.1021/bi00379a010. [DOI] [PubMed] [Google Scholar]
- Stankiewicz P. J., Hass L. F. The catalytic bimodality of mammalian phosphoglycerate mutase. J Biol Chem. 1986 Sep 25;261(27):12715–12721. [PubMed] [Google Scholar]
- Tauler A., el-Maghrabi M. R., Pilkis S. J. Functional homology of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, phosphoglycerate mutase, and 2,3-bisphosphoglycerate mutase. J Biol Chem. 1987 Dec 15;262(35):16808–16815. [PubMed] [Google Scholar]
- Ueda T., Plagens D. G. 3-Phosphoglycerate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1229–1233. doi: 10.1073/pnas.84.5.1229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walaas S. I., Nairn A. C., Greengard P. Regional distribution of calcium- and cyclic adenosine 3':5'-monophosphate-regulated protein phosphorylation systems in mammalian brain. I. Particulate systems. J Neurosci. 1983 Feb;3(2):291–301. doi: 10.1523/JNEUROSCI.03-02-00291.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wheeler T. J., Lowenstein J. M. Creatine phosphate inhibition of adenylate deaminase is mainly due to pyrophosphate. J Biol Chem. 1979 Mar 10;254(5):1484–1486. [PubMed] [Google Scholar]









