Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 May 15;284(Pt 1):161–167. doi: 10.1042/bj2840161

Affinity purification of the hepatic high-density lipoprotein receptor identifies two acidic glycoproteins and enables further characterization of their binding properties.

H Hidaka 1, N H Fidge 1
PMCID: PMC1132711  PMID: 1318018

Abstract

Several high-density lipoprotein (HDL)-binding proteins, candidates for the putative HDL receptor, have recently been identified, including two membrane proteins: HB1 of 120 kDa and HB2 of 100 kDa, present in rat and human liver plasma membranes respectively. Further insights into their function however, have been hampered by poor recoveries of these hydrophobic peptides, and the present work was undertaken to improve yields and enable a more detailed investigation of their properties. A significant improvement has been achieved using two affinity chromatographic procedures, one exploiting the glycoprotein nature of the proteins and the other exploiting their ligand properties, which in combination resulted in considerable enrichment of HB1 and HB2. Thus DEAE-Sephacel fractionation (0.05-0.2 M-NaCl) of CHAPS-solubilized plasma membranes yielded active HDL-binding proteins which bound to concanavalin A-Sepharose or wheat-germ-lectin-Sepharose columns and retained their binding activity after eluting with methyl-alpha-D-mannoside or N-acetylglucosamine respectively. These glycoproteins were further purified by affinity chromatography using apo-HDL-Sepharose columns. Final purification required preparative SDS/PAGE. Investigation of the carbohydrate moieties of the proteins using glycosidases and two-dimensional gel electrophoresis revealed pI values ranging from 4.6 to 4.9 and from 4.5 to 4.7 for HB1 and HB2 respectively, which after treatment with neuraminidase shifted towards basic pH (5.4-5.7 and 5.3-5.5 respectively). The molecular masses were decreased to 115 kDa and 95 kDa respectively, demonstrating that sialic acid residues contributed significantly to the negative charge of the glycosylated peptides. Treatment with the enzyme peptide N-glycosidase F (N-glycanase) resulted in a decrease in molecular mass of HB1 and HB2 to 105 kDa and 80 kDa respectively, but endo-alpha-N-acetylgalactosaminidase (O-glycanase) treatment was not effective. Neither neuraminidase nor N-glycanase treatment destroyed activity, suggesting that sialic acids or N-linked oligosaccharides are not important determinants of HDL binding. Digestion of plasma membranes with trypsin or Pronase resulted in a loss of activity of both HB1 and HB2 that was not influenced by prior treatment with neuraminidase, suggesting that sialic acid residues play no protective role against proteolytic cleavage of HDL receptor proteins.

Full text

PDF
164

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachorik P. S., Franklin F. A., Virgil D. G., Kwiterovich P. O., Jr High-affinity uptake and degradation of apolipoprotein E free high-density lipoprotein and low-density lipoprotein in cultured porcine hepatocytes. Biochemistry. 1982 Oct 26;21(22):5675–5684. doi: 10.1021/bi00265a044. [DOI] [PubMed] [Google Scholar]
  2. Barbaras R., Puchois P., Grimaldi P., Barkia A., Fruchart J. C., Ailhaud G. Relationship in adipose cells between the presence of receptor sites for high density lipoproteins and the promotion of reverse cholesterol transport. Biochem Biophys Res Commun. 1987 Dec 16;149(2):545–554. doi: 10.1016/0006-291x(87)90402-5. [DOI] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Chacko G. K. Characterization of high-density lipoprotein binding sites in rat liver and testis membranes. Biochim Biophys Acta. 1984 Sep 12;795(2):417–426. doi: 10.1016/0005-2760(84)90093-6. [DOI] [PubMed] [Google Scholar]
  5. Chacko G. K. Human high density lipoprotein (HDL3) binding to rat liver plasma membranes. Biochim Biophys Acta. 1982 Jul 20;712(1):129–141. doi: 10.1016/0005-2760(82)90094-7. [DOI] [PubMed] [Google Scholar]
  6. Chacko G. K. Modification of human high density lipoprotein (HDL3) with tetranitromethane and the effect on its binding to isolated rat liver plasma membranes. J Lipid Res. 1985 Jun;26(6):745–754. [PubMed] [Google Scholar]
  7. Cohn J. S., Fidge N. H., Nestel P. J. Initial plasma high-density lipoprotein distribution in the rat: effects of age, sex, and fasting. Am J Physiol. 1985 Sep;249(3 Pt 1):G369–G376. doi: 10.1152/ajpgi.1985.249.3.G369. [DOI] [PubMed] [Google Scholar]
  8. Cummings R. D., Kornfeld S. Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem. 1982 Oct 10;257(19):11235–11240. [PubMed] [Google Scholar]
  9. Cummings R. D., Kornfeld S., Schneider W. J., Hobgood K. K., Tolleshaug H., Brown M. S., Goldstein J. L. Biosynthesis of N- and O-linked oligosaccharides of the low density lipoprotein receptor. J Biol Chem. 1983 Dec 25;258(24):15261–15273. [PubMed] [Google Scholar]
  10. Daniel T. O., Milfay D. F., Escobedo J., Williams L. T. Biosynthetic and glycosylation studies of cell surface platelet-derived growth factor receptors. J Biol Chem. 1987 Jul 15;262(20):9778–9784. [PubMed] [Google Scholar]
  11. Davis C. G., Elhammer A., Russell D. W., Schneider W. J., Kornfeld S., Brown M. S., Goldstein J. L. Deletion of clustered O-linked carbohydrates does not impair function of low density lipoprotein receptor in transfected fibroblasts. J Biol Chem. 1986 Feb 25;261(6):2828–2838. [PubMed] [Google Scholar]
  12. Fidge N. H., Nestel P. J. Identification of apolipoproteins involved in the interaction of human high density lipoprotein3 with receptors on cultured cells. J Biol Chem. 1985 Mar 25;260(6):3570–3575. [PubMed] [Google Scholar]
  13. Fleischer S., Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6–41. doi: 10.1016/0076-6879(74)31005-1. [DOI] [PubMed] [Google Scholar]
  14. Glass C., Pittman R. C., Weinstein D. B., Steinberg D. Dissociation of tissue uptake of cholesterol ester from that of apoprotein A-I of rat plasma high density lipoprotein: selective delivery of cholesterol ester to liver, adrenal, and gonad. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5435–5439. doi: 10.1073/pnas.80.17.5435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Graham D. L., Oram J. F. Identification and characterization of a high density lipoprotein-binding protein in cell membranes by ligand blotting. J Biol Chem. 1987 Jun 5;262(16):7439–7442. [PubMed] [Google Scholar]
  16. Gwynne J. T., Hess B. The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis. J Biol Chem. 1980 Nov 25;255(22):10875–10883. [PubMed] [Google Scholar]
  17. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koelz H. R., Sherrill B. C., Turley S. D., Dietschy J. M. Correlation of low and high density lipoprotein binding in vivo with rates of lipoprotein degradation in the rat. A comparison of lipoproteins of rat and human origin. J Biol Chem. 1982 Jul 25;257(14):8061–8072. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Mathai D., Fidge N., Tozuka M., Mitchell A. Regulation of hepatic high density lipoprotein binding proteins after administration of simvastatin and cholestyramine to rats. Arteriosclerosis. 1990 Nov-Dec;10(6):1045–1050. doi: 10.1161/01.atv.10.6.1045. [DOI] [PubMed] [Google Scholar]
  21. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  22. Nakai T., Otto P. S., Kennedy D. L., Whayne T. F., Jr Rat high density lipoprotein subfraction (HDL3) uptake and catabolism by isolated rat liver parenchymal cells. J Biol Chem. 1976 Aug 25;251(16):4914–4921. [PubMed] [Google Scholar]
  23. Ose L., Ose T., Norum K. R., Berg T. Uptake and degradation of 125I-labelled high density lipoproteins in rat liver cells in vivo and in vitro. Biochim Biophys Acta. 1979 Sep 28;574(3):521–536. doi: 10.1016/0005-2760(79)90248-0. [DOI] [PubMed] [Google Scholar]
  24. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  25. Rifici V. A., Eder H. A. A hepatocyte receptor for high-density lipoproteins specific for apolipoprotein A-I. J Biol Chem. 1984 Nov 25;259(22):13814–13818. [PubMed] [Google Scholar]
  26. Schneider W. J., Beisiegel U., Goldstein J. L., Brown M. S. Purification of the low density lipoprotein receptor, an acidic glycoprotein of 164,000 molecular weight. J Biol Chem. 1982 Mar 10;257(5):2664–2673. [PubMed] [Google Scholar]
  27. Soltys P. A., Portman O. W., O'Malley J. P. Binding properties of high-density lipoprotein subfractions and low-density lipoproteins to rabbit hepatocytes. Biochim Biophys Acta. 1982 Nov 12;713(2):300–314. doi: 10.1016/0005-2760(82)90248-x. [DOI] [PubMed] [Google Scholar]
  28. Suzuki N., Fidge N., Nestel P., Yin J. Interaction of serum lipoproteins with the intestine. Evidence for specific high density lipoprotein-binding sites on isolated rat intestinal mucosal cells. J Lipid Res. 1983 Mar;24(3):253–264. [PubMed] [Google Scholar]
  29. Tozuka M., Fidge N. Purification and characterization of two high-density-lipoprotein-binding proteins from rat and human liver. Biochem J. 1989 Jul 1;261(1):239–244. doi: 10.1042/bj2610239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Van Berkel T. J., Kruijt J. K., Van Gent T., Van Tol A. Saturable high affinity binding of low density and high density lipoprotein by parenchymal and non-parenchymal cells from rat liver. Biochem Biophys Res Commun. 1980 Feb 12;92(3):1002–1008. doi: 10.1016/0006-291x(80)90801-3. [DOI] [PubMed] [Google Scholar]
  31. Van Berkel T. J., Kruijt J. K., Van Gent T., Van Tol A. Saturable high affinity binding, uptake and degradation of rat plasma lipoproteins by isolated parenchymal and non-parenchymal cells from rat liver. Biochim Biophys Acta. 1981 Jul 24;665(1):22–33. doi: 10.1016/0005-2760(81)90227-7. [DOI] [PubMed] [Google Scholar]
  32. Wessel D., Flügge U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984 Apr;138(1):141–143. doi: 10.1016/0003-2697(84)90782-6. [DOI] [PubMed] [Google Scholar]
  33. Yamamoto K., Tsuji T., Matsumoto I., Osawa T. Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized wheat germ agglutinin. Biochemistry. 1981 Sep 29;20(20):5894–5899. doi: 10.1021/bi00523a037. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES