Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Jul 1;285(Pt 1):235–240. doi: 10.1042/bj2850235

The biologically active phospholipid, lysophosphatidic acid, induces phosphatidylcholine breakdown in fibroblasts via activation of phospholipase D. Comparison with the response to endothelin.

R L van der Bend 1, J de Widt 1, E J van Corven 1, W H Moolenaar 1, W J van Blitterswijk 1
PMCID: PMC1132771  PMID: 1637305

Abstract

Lysophosphatidic acid (LPA) is a simple phospholipid that possesses hormone- and growth-factor-like properties. LPA initiates its action by inducing GTP-dependent phosphoinositide hydrolysis and inhibiting adenylate cyclase [van Corven, Groenink, Jalink, Eichholtz & Moolenaar (1989) Cell 59, 45-54]. Here we show that LPA stimulates rapid breakdown of phosphatidylcholine (PC) in Rat-1 fibroblasts. LPA-induced PC breakdown occurs through activation of phospholipase D (PLD), as measured by the formation of free choline and phosphatidic acid and by transphosphatidylation in the presence of butan-1-ol. LPA also stimulates generation of diacylglycerol, but there is no detectable formation of phosphocholine, suggesting that a PC-specific phospholipase C (PLC) is not involved. The response to LPA was compared with that to endothelin, a potent inducer of phospholipid hydrolysis but a poor mitogen for Rat-1 cells. Our results indicate that: (1) LPA is less efficient than endothelin in inducing phosphoinositide and PC breakdown; (2) LPA-induced PLD activation is short-lived, levelling off after 2 min, whereas the endothelin-stimulated increase in PLD activity persists for at least 1 h; (3) the effect of LPA on PLD, like that of endothelin, is blocked by long-term pretreatment of the cells with phorbol ester, suggesting that PLD activation occurs through a protein kinase C-dependent mechanism. Furthermore, our results support the notion that there is no simple causal relationship between the degree of agonist-induced phospholipid hydrolysis and the magnitude of the mitogenic response.

Full text

PDF
237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benton A. M., Gerrard J. M., Michiel T., Kindom S. E. Are lysophosphatidic acids or phosphatidic acids involved in stimulus activation coupling in platelets? Blood. 1982 Sep;60(3):642–649. [PubMed] [Google Scholar]
  2. Billah M. M., Anthes J. C. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J. 1990 Jul 15;269(2):281–291. doi: 10.1042/bj2690281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
  4. Bocckino S. B., Wilson P. B., Exton J. H. Phosphatidate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6210–6213. doi: 10.1073/pnas.88.14.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown K. D., Littlewood C. J. Endothelin stimulates DNA synthesis in Swiss 3T3 cells. Synergy with polypeptide growth factors. Biochem J. 1989 Nov 1;263(3):977–980. doi: 10.1042/bj2630977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cabot M. C., Welsh C. J., Cao H. T., Chabbott H. The phosphatidylcholine pathway of diacylglycerol formation stimulated by phorbol diesters occurs via phospholipase D activation. FEBS Lett. 1988 Jun 6;233(1):153–157. doi: 10.1016/0014-5793(88)81374-7. [DOI] [PubMed] [Google Scholar]
  7. Exton J. H. Signaling through phosphatidylcholine breakdown. J Biol Chem. 1990 Jan 5;265(1):1–4. [PubMed] [Google Scholar]
  8. Griendling K. K., Tsuda T., Alexander R. W. Endothelin stimulates diacylglycerol accumulation and activates protein kinase C in cultured vascular smooth muscle cells. J Biol Chem. 1989 May 15;264(14):8237–8240. [PubMed] [Google Scholar]
  9. Jalink K., van Corven E. J., Moolenaar W. H. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J Biol Chem. 1990 Jul 25;265(21):12232–12239. [PubMed] [Google Scholar]
  10. Larrodera P., Cornet M. E., Diaz-Meco M. T., Lopez-Barahona M., Diaz-Laviada I., Guddal P. H., Johansen T., Moscat J. Phospholipase C-mediated hydrolysis of phosphatidylcholine is an important step in PDGF-stimulated DNA synthesis. Cell. 1990 Jun 15;61(6):1113–1120. doi: 10.1016/0092-8674(90)90074-o. [DOI] [PubMed] [Google Scholar]
  11. MacNulty E. E., Plevin R., Wakelam M. J. Stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine by endothelin, a complete mitogen for Rat-1 fibroblasts. Biochem J. 1990 Dec 15;272(3):761–766. doi: 10.1042/bj2720761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Martin T. W. Formation of diacylglycerol by a phospholipase D-phosphatidate phosphatase pathway specific for phosphatidylcholine in endothelial cells. Biochim Biophys Acta. 1988 Oct 14;962(3):282–296. doi: 10.1016/0005-2760(88)90258-5. [DOI] [PubMed] [Google Scholar]
  13. Moolenaar W. H. G-protein-coupled receptors, phosphoinositide hydrolysis, and cell proliferation. Cell Growth Differ. 1991 Jul;2(7):359–364. [PubMed] [Google Scholar]
  14. Moolenaar W. H. Mitogenic action of lysophosphatidic acid. Adv Cancer Res. 1991;57:87–102. doi: 10.1016/s0065-230x(08)60996-3. [DOI] [PubMed] [Google Scholar]
  15. Muldoon L. L., Rodland K. D., Forsythe M. L., Magun B. E. Stimulation of phosphatidylinositol hydrolysis, diacylglycerol release, and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells. J Biol Chem. 1989 May 25;264(15):8529–8536. [PubMed] [Google Scholar]
  16. Pai J. K., Siegel M. I., Egan R. W., Billah M. M. Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem. 1988 Sep 5;263(25):12472–12477. [PubMed] [Google Scholar]
  17. Seuwen K., Kahan C., Hartmann T., Pouyssegur J. Strong and persistent activation of inositol lipid breakdown induces early mitogenic events but not Go to S phase progression in hamster fibroblasts. Comparison of thrombin and carbachol action in cells expressing M1 muscarinic acetylcholine receptors. J Biol Chem. 1990 Dec 25;265(36):22292–22299. [PubMed] [Google Scholar]
  18. Sunako M., Kawahara Y., Kariya K., Araki S., Fukuzaki H., Takai Y. Endothelin-induced biphasic formation of 1,2-diacylglycerol in cultured rabbit vascular smooth muscle cells--mass analysis with a radioenzymatic assay. Biochem Biophys Res Commun. 1989 Apr 28;160(2):744–750. doi: 10.1016/0006-291x(89)92496-0. [DOI] [PubMed] [Google Scholar]
  19. Takuwa N., Takuwa Y., Yanagisawa M., Yamashita K., Masaki T. A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem. 1989 May 15;264(14):7856–7861. [PubMed] [Google Scholar]
  20. Tilly B. C., van Paridon P. A., Verlaan I., de Laat S. W., Moolenaar W. H. Epidermal-growth-factor-induced formation of inositol phosphates in human A431 cells. Differences from the effect of bradykinin. Biochem J. 1988 Jun 15;252(3):857–863. doi: 10.1042/bj2520857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tokumura A., Fukuzawa K., Yamada S., Tsukatani H. Stimulatory effect of lysophosphatidic acids on uterine smooth muscles of non-pregant rats. Arch Int Pharmacodyn Ther. 1980 May;245(1):74–83. [PubMed] [Google Scholar]
  22. Tyagi S. R., Olson S. C., Burnham D. N., Lambeth J. D. Cyclic AMP-elevating agents block chemoattractant activation of diradylglycerol generation by inhibiting phospholipase D activation. J Biol Chem. 1991 Feb 25;266(6):3498–3504. [PubMed] [Google Scholar]
  23. van Blitterswijk W. J., Hilkmann H., de Widt J., van der Bend R. L. Phospholipid metabolism in bradykinin-stimulated human fibroblasts. I. Biphasic formation of diacylglycerol from phosphatidylinositol and phosphatidylcholine, controlled by protein kinase C. J Biol Chem. 1991 Jun 5;266(16):10337–10343. [PubMed] [Google Scholar]
  24. van Blitterswijk W. J., Hilkmann H., de Widt J., van der Bend R. L. Phospholipid metabolism in bradykinin-stimulated human fibroblasts. II. Phosphatidylcholine breakdown by phospholipases C and D; involvement of protein kinase C. J Biol Chem. 1991 Jun 5;266(16):10344–10350. [PubMed] [Google Scholar]
  25. van Corven E. J., Groenink A., Jalink K., Eichholtz T., Moolenaar W. H. Lysophosphatidate-induced cell proliferation: identification and dissection of signaling pathways mediated by G proteins. Cell. 1989 Oct 6;59(1):45–54. doi: 10.1016/0092-8674(89)90868-4. [DOI] [PubMed] [Google Scholar]
  26. van Corven E. J., van Rijswijk A., Jalink K., van der Bend R. L., van Blitterswijk W. J., Moolenaar W. H. Mitogenic action of lysophosphatidic acid and phosphatidic acid on fibroblasts. Dependence on acyl-chain length and inhibition by suramin. Biochem J. 1992 Jan 1;281(Pt 1):163–169. doi: 10.1042/bj2810163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van der Bend R. L., de Widt J., van Corven E. J., Moolenaar W. H., van Blitterswijk W. J. Metabolic conversion of the biologically active phospholipid, lysophosphatidic acid, in fibroblasts. Biochim Biophys Acta. 1992 Apr 8;1125(1):110–112. doi: 10.1016/0005-2760(92)90163-p. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES