Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Aug 1;285(Pt 3):725–729. doi: 10.1042/bj2850725

The chloride channel blocker anthracene 9-carboxylate inhibits fatty acid incorporation into phospholipid in cultured human airway epithelial cells.

J X Kang 1, S F Man 1, N E Brown 1, P A Labrecque 1, M T Clandinin 1
PMCID: PMC1132855  PMID: 1323271

Abstract

This study investigated whether making epithelial cell membranes impermeable to Cl- movement affects incorporation of fatty acids into membrane constituents. Epithelial cells were isolated from human nasal polyps, cultured for 5-7 days, and used to test the effect of anthracene 9-carboxylate (9-AC), known to inhibit Cl- conductance across the epithelial membrane, on the incorporation and desaturation of [1-14C]linoleic acid (C18:2,n-6) in experiments of up to 4 h duration. 9-AC (5 mM) reduced C18:2,n-6 incorporation into phospholipid by 60-70%, and increased incorporation of C18:2,n-6 into triacylglycerol by 50-100%. The decrease in C18:2,n-6 incorporation into phospholipid was rapid and dependent on the concentration of 9-AC. Substitution of extracellular Cl- with gluconate significantly decreased C18:2,n-6 incorporation into phospholipid, suggesting that the effect of 9-AC may occur by inhibiting Cl- conductance. Lipid analysis of cells exposed to 50 microM-C18:2 revealed that, as a consequence of the effect of 9-AC, the level of C18:2,n-6 in cell membrane phospholipid was significantly lowered. The relative rate of C18:2,n-6 desaturation was not apparently changed by 9-AC. These data suggest that Cl- conductance may play a role in fatty acid incorporation into epithelial cell membrane phospholipids.

Full text

PDF
726

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. P., Welsh M. J. Fatty acids inhibit apical membrane chloride channels in airway epithelia. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7334–7338. doi: 10.1073/pnas.87.18.7334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chase H. P., Dabiere C. S., Elliott R. B. Fibroblast fatty acids in cystic fibrosis. Metabolism. 1980 Apr;29(4):365–368. doi: 10.1016/0026-0495(80)90011-6. [DOI] [PubMed] [Google Scholar]
  3. Chase H. P., Dupont J. Abnormal levels of prostaglandins and fatty acids in blood of children with cystic fibrosis. Lancet. 1978 Jul 29;2(8083):236–238. doi: 10.1016/s0140-6736(78)91746-4. [DOI] [PubMed] [Google Scholar]
  4. Cook H. W., Spence M. W. Interaction of (n-3) and (n-6) fatty acids in desaturation and chain elongation of essential fatty acids in cultured glioma cells. Lipids. 1987 Sep;22(9):613–619. doi: 10.1007/BF02533938. [DOI] [PubMed] [Google Scholar]
  5. Dalemans W., Barbry P., Champigny G., Jallat S., Dott K., Dreyer D., Crystal R. G., Pavirani A., Lecocq J. P., Lazdunski M. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature. 1991 Dec 19;354(6354):526–528. doi: 10.1038/354526a0. [DOI] [PubMed] [Google Scholar]
  6. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  7. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  8. Gilljam H., Strandvik B., Ellin A., Wiman L. G. Increased mole fraction of arachidonic acid in bronchial phospholipids in patients with cystic fibrosis. Scand J Clin Lab Invest. 1986 Oct;46(6):511–518. doi: 10.3109/00365518609083706. [DOI] [PubMed] [Google Scholar]
  9. Gögelein H. Chloride channels in epithelia. Biochim Biophys Acta. 1988 Oct 11;947(3):521–547. doi: 10.1016/0304-4157(88)90006-8. [DOI] [PubMed] [Google Scholar]
  10. Hargreaves K. M., Clandinin M. T. Phosphatidylethanolamine methyltransferase: evidence for influence of diet fat on selectivity of substrate for methylation in rat brain synaptic plasma membranes. Biochim Biophys Acta. 1987 Apr 3;918(2):97–105. doi: 10.1016/0005-2760(87)90183-4. [DOI] [PubMed] [Google Scholar]
  11. Hwang T. C., Guggino S. E., Guggino W. B. Direct modulation of secretory chloride channels by arachidonic and other cis unsaturated fatty acids. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5706–5709. doi: 10.1073/pnas.87.15.5706. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  14. Lloyd-Still J. D., Johnson S. B., Holman R. T. Essential fatty acid status in cystic fibrosis and the effects of safflower oil supplementation. Am J Clin Nutr. 1981 Jan;34(1):1–7. doi: 10.1093/ajcn/34.1.1. [DOI] [PubMed] [Google Scholar]
  15. Oberleithner H., Ritter M., Lang F., Guggino W. Anthracene-9-carboxylic acid inhibits renal chloride reabsorption. Pflugers Arch. 1983 Jul;398(2):172–174. doi: 10.1007/BF00581068. [DOI] [PubMed] [Google Scholar]
  16. Ordway R. W., Singer J. J., Walsh J. V., Jr Direct regulation of ion channels by fatty acids. Trends Neurosci. 1991 Mar;14(3):96–100. doi: 10.1016/0166-2236(91)90069-7. [DOI] [PubMed] [Google Scholar]
  17. Quinton P. M. Defective epithelial ion transport in cystic fibrosis. Clin Chem. 1989 May;35(5):726–730. [PubMed] [Google Scholar]
  18. Rivers J. P., Hassam A. G. Defective essential-fatty-acid metabolism in cystic fibrosis. Lancet. 1975 Oct 4;2(7936):642–643. doi: 10.1016/s0140-6736(75)90121-x. [DOI] [PubMed] [Google Scholar]
  19. Rogiers V., Dab I., Crokaert R., Vis H. L. Long chain non-esterified fatty acid pattern in plasma of cystic fibrosis patients and their parents. Pediatr Res. 1980 Sep;14(9):1088–1091. doi: 10.1203/00006450-198009000-00015. [DOI] [PubMed] [Google Scholar]
  20. Rogiers V., Mandelbaum I., Mozes N., Vertongen F., Dab I., Crokaert R., Vis H. L. In vitro study of the incorporation and transport of nonesterified fatty acids into the phospholipids of the red blood cell membranes of cystic fibrosis patients. Pediatr Res. 1982 Sep;16(9):761–768. doi: 10.1203/00006450-198209000-00011. [DOI] [PubMed] [Google Scholar]
  21. Rogiers V., Vercruysse A., Dab I., Baran D. Abnormal fatty acid pattern of the plasma cholesterol ester fraction in cystic fibrosis patients with and without pancreatic insufficiency. Eur J Pediatr. 1983 Oct;141(1):39–42. doi: 10.1007/BF00445666. [DOI] [PubMed] [Google Scholar]
  22. Rosenfeld M. A., Yoshimura K., Trapnell B. C., Yoneyama K., Rosenthal E. R., Dalemans W., Fukayama M., Bargon J., Stier L. E., Stratford-Perricaudet L. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell. 1992 Jan 10;68(1):143–155. doi: 10.1016/0092-8674(92)90213-v. [DOI] [PubMed] [Google Scholar]
  23. Strandvik B. Relation between essential fatty acid metabolism and gastrointestinal symptoms in cystic fibrosis. Acta Paediatr Scand Suppl. 1989;363:58–65. doi: 10.1111/apa.1989.78.s363.58. [DOI] [PubMed] [Google Scholar]
  24. Welsh M. J. An apical-membrane chloride channel in human tracheal epithelium. Science. 1986 Jun 27;232(4758):1648–1650. doi: 10.1126/science.2424085. [DOI] [PubMed] [Google Scholar]
  25. Welsh M. J. Anthracene-9-carboxylic acid inhibits an apical membrane chloride conductance in canine tracheal epithelium. J Membr Biol. 1984;78(1):61–71. doi: 10.1007/BF01872533. [DOI] [PubMed] [Google Scholar]
  26. Welsh M. J. Single apical membrane anion channels in primary cultures of canine tracheal epithelium. Pflugers Arch. 1986;407 (Suppl 2):S116–S122. doi: 10.1007/BF00584940. [DOI] [PubMed] [Google Scholar]
  27. Wong P. Y. Inhibition by chloride channel blockers of anion secretion in cultured epididymal epithelium and intact epididymis of rats. Br J Pharmacol. 1988 May;94(1):155–163. doi: 10.1111/j.1476-5381.1988.tb11510.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yankaskas J. R., Cotton C. U., Knowles M. R., Gatzy J. T., Boucher R. C. Culture of human nasal epithelial cells on collagen matrix supports. A comparison of bioelectric properties of normal and cystic fibrosis epithelia. Am Rev Respir Dis. 1985 Dec;132(6):1281–1287. doi: 10.1164/arrd.1985.132.6.1281. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES