Full text
PDF

















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acerenza L., Sauro H. M., Kacser H. Control analysis of time-dependent metabolic systems. J Theor Biol. 1989 Apr 20;137(4):423–444. doi: 10.1016/s0022-5193(89)80038-4. [DOI] [PubMed] [Google Scholar]
- Barrett J. A simple matrix method for determining flux control coefficients in complex pathways. Biochim Biophys Acta. 1989 Sep 15;992(3):369–374. doi: 10.1016/0304-4165(89)90098-6. [DOI] [PubMed] [Google Scholar]
- Boyer B., Odessey R. Quantitative control analysis of branched-chain 2-oxo acid dehydrogenase complex activity by feedback inhibition. Biochem J. 1990 Oct 15;271(2):523–528. doi: 10.1042/bj2710523. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brand M. D., Hafner R. P., Brown G. C. Control of respiration in non-phosphorylating mitochondria is shared between the proton leak and the respiratory chain. Biochem J. 1988 Oct 15;255(2):535–539. [PMC free article] [PubMed] [Google Scholar]
- Brindle K. M. 31P NMR magnetization-transfer measurements of flux between inorganic phosphate and adenosine 5'-triphosphate in yeast cells genetically modified to overproduce phosphoglycerate kinase. Biochemistry. 1988 Aug 9;27(16):6187–6196. doi: 10.1021/bi00416a054. [DOI] [PubMed] [Google Scholar]
- Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
- Brown G. C., Lakin-Thomas P. L., Brand M. D. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur J Biochem. 1990 Sep 11;192(2):355–362. doi: 10.1111/j.1432-1033.1990.tb19234.x. [DOI] [PubMed] [Google Scholar]
- Caplan S. R., Pietrobon D. Theoretical analysis of double-titration experiments. Biochim Biophys Acta. 1987;895(3):241–258. doi: 10.1016/s0304-4173(87)80004-6. [DOI] [PubMed] [Google Scholar]
- Cascante M., Canela E. I., Franco R. Control analysis of systems having two steps catalyzed by the same protein molecule in unbranched chains. Eur J Biochem. 1990 Sep 11;192(2):369–371. doi: 10.1111/j.1432-1033.1990.tb19236.x. [DOI] [PubMed] [Google Scholar]
- Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. I. Unbranched pathways. Math Biosci. 1989 Jun;94(2):271–288. doi: 10.1016/0025-5564(89)90067-9. [DOI] [PubMed] [Google Scholar]
- Cascante M., Franco R., Canela E. I. Use of implicit methods from general sensitivity theory to develop a systematic approach to metabolic control. II. Complex systems. Math Biosci. 1989 Jun;94(2):289–309. doi: 10.1016/0025-5564(89)90068-0. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A., Hofmeyr J. H. MetaModel: a program for modelling and control analysis of metabolic pathways on the IBM PC and compatibles. Comput Appl Biosci. 1991 Jan;7(1):89–93. doi: 10.1093/bioinformatics/7.1.89. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A. Metabolic control therapy and biochemical systems theory: different objectives, different assumptions, different results. J Theor Biol. 1989 Feb 22;136(4):365–377. doi: 10.1016/s0022-5193(89)80154-7. [DOI] [PubMed] [Google Scholar]
- Cornish-Bowden A., Szedlacsek S. E. Very large response coefficients in interconvertible enzyme cascades. Biomed Biochim Acta. 1990;49(8-9):829–837. [PubMed] [Google Scholar]
- Crabtree B., Collins G., Franklin M. I. A simplified method for calculating complex metabolic sensitivities by using matrix partitioning. Biochem J. 1989 Oct 1;263(1):289–292. doi: 10.1042/bj2630289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabtree B., Newsholme E. A. A quantitative approach to metabolic control. Curr Top Cell Regul. 1985;25:21–76. doi: 10.1016/b978-0-12-152825-6.50006-0. [DOI] [PubMed] [Google Scholar]
- Crabtree B., Newsholme E. A. Sensitivity of a near-equilibrium reaction in a metabolic pathway to changes in substrate concentration. Eur J Biochem. 1978 Aug 15;89(1):19–22. doi: 10.1111/j.1432-1033.1978.tb20891.x. [DOI] [PubMed] [Google Scholar]
- Crabtree B., Newsholme E. A. The derivation and interpretation of control coefficients. Biochem J. 1987 Oct 1;247(1):113–120. doi: 10.1042/bj2470113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crabtree B. Theoretical considerations of the sensitivity conferred by substrate cycles in vivo. Biochem Soc Trans. 1976;4(6):999–1002. doi: 10.1042/bst0040999a. [DOI] [PubMed] [Google Scholar]
- Davies S. E., Brindle K. M. Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry. 1992 May 19;31(19):4729–4735. doi: 10.1021/bi00134a028. [DOI] [PubMed] [Google Scholar]
- Delgado J., Liao J. C. Determination of Flux Control Coefficients from transient metabolite concentrations. Biochem J. 1992 Mar 15;282(Pt 3):919–927. doi: 10.1042/bj2820919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dykhuizen D. E., Dean A. M., Hartl D. L. Metabolic flux and fitness. Genetics. 1987 Jan;115(1):25–31. doi: 10.1093/genetics/115.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Easterby J. S. Integration of temporal analysis and control analysis of metabolic systems. Biochem J. 1990 Jul 1;269(1):255–259. doi: 10.1042/bj2690255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eschrich K., Schellenberger W., Hofmann E. Sustained oscillations in a reconstituted enzyme system containing phosphofructokinase and fructose 1,6-bisphosphatase. Arch Biochem Biophys. 1983 Apr 15;222(2):657–660. doi: 10.1016/0003-9861(83)90563-5. [DOI] [PubMed] [Google Scholar]
- Fell D. A., Sauro H. M. Metabolic control analysis by computer: progress and prospects. Biomed Biochim Acta. 1990;49(8-9):811–816. [PubMed] [Google Scholar]
- Fell D. A., Sauro H. M. Metabolic control analysis. The effects of high enzyme concentrations. Eur J Biochem. 1990 Aug 28;192(1):183–187. doi: 10.1111/j.1432-1033.1990.tb19212.x. [DOI] [PubMed] [Google Scholar]
- Fell D. A., Sauro H. M. Metabolic control and its analysis. Additional relationships between elasticities and control coefficients. Eur J Biochem. 1985 May 2;148(3):555–561. doi: 10.1111/j.1432-1033.1985.tb08876.x. [DOI] [PubMed] [Google Scholar]
- Fell D. A., Snell K. Control analysis of mammalian serine biosynthesis. Feedback inhibition on the final step. Biochem J. 1988 Nov 15;256(1):97–101. doi: 10.1042/bj2560097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flint H. J., Tateson R. W., Barthelmess I. B., Porteous D. J., Donachie W. D., Kacser H. Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem J. 1981 Nov 15;200(2):231–246. doi: 10.1042/bj2000231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gellerich F. N., Kunz W. S., Bohnensack R. Estimation of flux control coefficients from inhibitor titrations by non-linear regression. FEBS Lett. 1990 Nov 12;274(1-2):167–170. doi: 10.1016/0014-5793(90)81355-r. [DOI] [PubMed] [Google Scholar]
- Giersch C. Control analysis of biochemical pathways: a novel procedure for calculating control coefficients, and an additional theorem for branched pathways. J Theor Biol. 1988 Oct 21;134(4):451–462. doi: 10.1016/s0022-5193(88)80051-1. [DOI] [PubMed] [Google Scholar]
- Giersch C. Control analysis of metabolic networks. 1. Homogeneous functions and the summation theorems for control coefficients. Eur J Biochem. 1988 Jun 15;174(3):509–513. doi: 10.1111/j.1432-1033.1988.tb14128.x. [DOI] [PubMed] [Google Scholar]
- Giersch C. Control analysis of metabolic networks. 2. Total differentials and general formulation of the connectivity relations. Eur J Biochem. 1988 Jun 15;174(3):515–519. doi: 10.1111/j.1432-1033.1988.tb14129.x. [DOI] [PubMed] [Google Scholar]
- Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
- Groen A. K., van Roermund C. W., Vervoorn R. C., Tager J. M. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem J. 1986 Jul 15;237(2):379–389. doi: 10.1042/bj2370379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HIGGINS J. Analysis of sequential reactions. Ann N Y Acad Sci. 1963 May 10;108:305–321. doi: 10.1111/j.1749-6632.1963.tb13382.x. [DOI] [PubMed] [Google Scholar]
- Hafner R. P., Brand M. D. Effect of protonmotive force on the relative proton stoichiometries of the mitochondrial proton pumps. Biochem J. 1991 Apr 1;275(Pt 1):75–80. doi: 10.1042/bj2750075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. [DOI] [PubMed] [Google Scholar]
- Heinisch J. Isolation and characterization of the two structural genes coding for phosphofructokinase in yeast. Mol Gen Genet. 1986 Jan;202(1):75–82. doi: 10.1007/BF00330520. [DOI] [PubMed] [Google Scholar]
- Heinrich R. Mathematical models of metabolic systems: general principles and control of glycolysis and membrane transport in erythrocytes. Biomed Biochim Acta. 1985;44(6):913–927. [PubMed] [Google Scholar]
- Heinrich R., Rapoport S. M., Rapoport T. A. Metabolic regulation and mathematical models. Prog Biophys Mol Biol. 1977;32(1):1–82. [PubMed] [Google Scholar]
- Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. Critique of the crossover theorem and a general procedure to identify interaction sites with an effector. Eur J Biochem. 1974 Feb 15;42(1):97–105. doi: 10.1111/j.1432-1033.1974.tb03319.x. [DOI] [PubMed] [Google Scholar]
- Heinrich R., Rapoport T. A. A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur J Biochem. 1974 Feb 15;42(1):89–95. doi: 10.1111/j.1432-1033.1974.tb03318.x. [DOI] [PubMed] [Google Scholar]
- Heinrich R., Schuster S., Holzhütter H. G. Mathematical analysis of enzymic reaction systems using optimization principles. Eur J Biochem. 1991 Oct 1;201(1):1–21. doi: 10.1111/j.1432-1033.1991.tb16251.x. [DOI] [PubMed] [Google Scholar]
- Heinrich R., Schuster S. Is metabolic channelling the complicated solution to the easy problem of reducing transient times? J Theor Biol. 1991 Sep 7;152(1):57–61. doi: 10.1016/s0022-5193(05)80510-7. [DOI] [PubMed] [Google Scholar]
- Hess B., Boiteux A. Mechanism of glycolytic oscillation in yeast. I. Aerobic and anaerobic growth conditions for obtaining glycolytic oscillation. Hoppe Seylers Z Physiol Chem. 1968 Nov;349(11):1567–1574. doi: 10.1515/bchm2.1968.349.2.1567. [DOI] [PubMed] [Google Scholar]
- Hofmeyr J. H. Control-pattern analysis of metabolic pathways. Flux and concentration control in linear pathways. Eur J Biochem. 1989 Dec 8;186(1-2):343–354. doi: 10.1111/j.1432-1033.1989.tb15215.x. [DOI] [PubMed] [Google Scholar]
- Hofmeyr J. H., Cornish-Bowden A. Quantitative assessment of regulation in metabolic systems. Eur J Biochem. 1991 Aug 15;200(1):223–236. doi: 10.1111/j.1432-1033.1991.tb21071.x. [DOI] [PubMed] [Google Scholar]
- Hofmeyr J. H., Kacser H., van der Merwe K. J. Metabolic control analysis of moiety-conserved cycles. Eur J Biochem. 1986 Mar 17;155(3):631–641. doi: 10.1111/j.1432-1033.1986.tb09534.x. [DOI] [PubMed] [Google Scholar]
- Holzhütter H. G., Jacobasch G., Bisdorff A. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. A mathematical model of glycolysis in normal and pyruvate-kinase-deficient red blood cells. Eur J Biochem. 1985 May 15;149(1):101–111. doi: 10.1111/j.1432-1033.1985.tb08899.x. [DOI] [PubMed] [Google Scholar]
- Holzhütter H. G., Schuster R., Buckwitz D., Jacobasch G. Mathematical modelling of metabolic pathways affected by an enzyme deficiency. Biomed Biochim Acta. 1990;49(8-9):791–800. [PubMed] [Google Scholar]
- Kacser H. A superior theory? J Theor Biol. 1991 Mar 7;149(1):141–144. doi: 10.1016/s0022-5193(05)80076-1. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. MOlecular democracy: who shares the controls? Biochem Soc Trans. 1979 Oct;7(5):1149–1160. doi: 10.1042/bst0071149. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kacser H., Sauro H. M., Acerenza L. Enzyme-enzyme interactions and control analysis. 1. The case of non-additivity: monomer-oligomer associations. Eur J Biochem. 1990 Feb 14;187(3):481–491. doi: 10.1111/j.1432-1033.1990.tb15329.x. [DOI] [PubMed] [Google Scholar]
- Kacser H. The control of enzyme systems in vivo: elasticity analysis of the steady state. Biochem Soc Trans. 1983 Jan;11(1):35–40. doi: 10.1042/bst0110035. [DOI] [PubMed] [Google Scholar]
- Kahn D., Westerhoff H. V. Control theory of regulatory cascades. J Theor Biol. 1991 Nov 21;153(2):255–285. doi: 10.1016/s0022-5193(05)80426-6. [DOI] [PubMed] [Google Scholar]
- Kawasaki G., Fraenkel D. G. Cloning of yeast glycolysis genes by complementation. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1107–1122. doi: 10.1016/0006-291x(82)92114-3. [DOI] [PubMed] [Google Scholar]
- Kohn M. C., Chiang E. Metabolic network sensitivity analysis. J Theor Biol. 1982 Sep 7;98(1):109–126. doi: 10.1016/0022-5193(82)90061-3. [DOI] [PubMed] [Google Scholar]
- Kohn M. C., Chiang E. Sensitivity to values of the rate constants in a neurochemical metabolic model. J Theor Biol. 1983 Feb 21;100(4):551–565. doi: 10.1016/0022-5193(83)90323-5. [DOI] [PubMed] [Google Scholar]
- Kohn M. C. Computer simulation of metabolism in palmitate-perfused rat heart. III. Sensitivity analysis. Ann Biomed Eng. 1983;11(6):533–549. doi: 10.1007/BF02364083. [DOI] [PubMed] [Google Scholar]
- Kruckeberg A. L., Neuhaus H. E., Feil R., Gottlieb L. D., Stitt M. Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana. Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of Flux Control Coefficients and Elasticity Coefficients. Biochem J. 1989 Jul 15;261(2):457–467. doi: 10.1042/bj2610457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Letellier T., Reder C., Mazat J. P. CONTROL: software for the analysis of the control of metabolic networks. Comput Appl Biosci. 1991 Jul;7(3):383–390. doi: 10.1093/bioinformatics/7.3.383. [DOI] [PubMed] [Google Scholar]
- Magnani M., Rossi L., Bianchi M., Fornaini G., Benatti U., Guida L., Zocchi E., De Flora A. Improved metabolic properties of hexokinase-overloaded human erythrocytes. Biochim Biophys Acta. 1988 Oct 28;972(1):1–8. doi: 10.1016/0167-4889(88)90095-x. [DOI] [PubMed] [Google Scholar]
- Markus M., Kuschmitz D., Hess B. Chaotic dynamics in yeast glycolysis under periodic substrate input flux. FEBS Lett. 1984 Jul 9;172(2):235–238. doi: 10.1016/0014-5793(84)81132-1. [DOI] [PubMed] [Google Scholar]
- Mayorek N., Grinstein I., Bar-Tana J. Triacylglycerol synthesis in cultured rat hepatocytes. The rate-limiting role of diacylglycerol acyltransferase. Eur J Biochem. 1989 Jun 15;182(2):395–400. doi: 10.1111/j.1432-1033.1989.tb14844.x. [DOI] [PubMed] [Google Scholar]
- Meléndez-Hevia E., Torres N. V., Sicilia J. A generalization of metabolic control analysis to conditions of no proportionality between activity and concentration of enzymes. J Theor Biol. 1990 Feb 22;142(4):443–451. doi: 10.1016/s0022-5193(05)80100-6. [DOI] [PubMed] [Google Scholar]
- Meléndez-Hevia E., Torres N. V., Sicilia J., Kacser H. Control analysis of transition times in metabolic systems. Biochem J. 1990 Jan 1;265(1):195–202. doi: 10.1042/bj2650195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middleton R. J., Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. doi: 10.1093/genetics/105.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy M. P., Brand M. D. The control of electron flux through cytochrome oxidase. Biochem J. 1987 Apr 15;243(2):499–505. doi: 10.1042/bj2430499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy M. P., Brand M. D. Variable stoichiometry of proton pumping by the mitochondrial respiratory chain. Nature. 1987 Sep 10;329(6135):170–172. doi: 10.1038/329170a0. [DOI] [PubMed] [Google Scholar]
- Newsholme E. A., Crabtree B. Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp. 1976;(41):61–109. [PubMed] [Google Scholar]
- Orr H. A. A test of Fisher's theory of dominance. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11413–11415. doi: 10.1073/pnas.88.24.11413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ottaway J. H. Control points in the citric acid cycle. Biochem Soc Trans. 1976;4(2):371–376. doi: 10.1042/bst0040371. [DOI] [PubMed] [Google Scholar]
- Ovádi J. Physiological significance of metabolic channelling. J Theor Biol. 1991 Sep 7;152(1):1–22. [PubMed] [Google Scholar]
- Padovan A. C., Dry I. B., Wiskich J. T. An analysis of the control of phosphorylation-coupled respiration in isolated plant mitochondria. Plant Physiol. 1989 Jul;90(3):928–933. doi: 10.1104/pp.90.3.928. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Page R. A., Kitson K. E., Hardman M. J. The importance of alcohol dehydrogenase in regulation of ethanol metabolism in rat liver cells. Biochem J. 1991 Sep 15;278(Pt 3):659–665. doi: 10.1042/bj2780659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park D. J. An algorithm for detecting non-steady state moieties in steady state subnetworks. J Theor Biol. 1974 Nov;48(1):125–131. doi: 10.1016/0022-5193(74)90183-0. [DOI] [PubMed] [Google Scholar]
- Park D. J. The hierarchical structure of metabolic networks and the construction of efficient metabolic simulators. J Theor Biol. 1974 Jul;46(1):31–74. doi: 10.1016/0022-5193(74)90139-8. [DOI] [PubMed] [Google Scholar]
- Petronilli V., Azzone G. F., Pietrobon D. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments. Biochim Biophys Acta. 1988 Mar 9;932(3):306–324. doi: 10.1016/0005-2728(88)90167-3. [DOI] [PubMed] [Google Scholar]
- Pettersson G., Ryde-Pettersson U. A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem. 1988 Aug 15;175(3):661–672. doi: 10.1111/j.1432-1033.1988.tb14242.x. [DOI] [PubMed] [Google Scholar]
- Rapoport T. A., Heinrich R., Jacobasch G., Rapoport S. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur J Biochem. 1974 Feb 15;42(1):107–120. doi: 10.1111/j.1432-1033.1974.tb03320.x. [DOI] [PubMed] [Google Scholar]
- Rapoport T. A., Heinrich R., Rapoport S. M. The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes. Biochem J. 1976 Feb 15;154(2):449–469. doi: 10.1042/bj1540449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reder C. Metabolic control theory: a structural approach. J Theor Biol. 1988 Nov 21;135(2):175–201. doi: 10.1016/s0022-5193(88)80073-0. [DOI] [PubMed] [Google Scholar]
- Rigoulet M., Leverve X. M., Plomp P. J., Meijer A. J. Stimulation by glucose of gluconeogenesis in hepatocytes isolated from starved rats. Biochem J. 1987 Aug 1;245(3):661–668. doi: 10.1042/bj2450661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rognstad R. Rate-limiting steps in metabolic pathways. J Biol Chem. 1979 Mar 25;254(6):1875–1878. [PubMed] [Google Scholar]
- Ruyter G. J., Postma P. W., van Dam K. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J Bacteriol. 1991 Oct;173(19):6184–6191. doi: 10.1128/jb.173.19.6184-6191.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salter M., Knowles R. G., Pogson C. I. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J. 1986 Mar 15;234(3):635–647. doi: 10.1042/bj2340635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauro H. M., Kacser H. Enzyme-enzyme interactions and control analysis. 2. The case of non-independence: heterologous associations. Eur J Biochem. 1990 Feb 14;187(3):493–500. doi: 10.1111/j.1432-1033.1990.tb15330.x. [DOI] [PubMed] [Google Scholar]
- Sauro H. M., Small J. R., Fell D. A. Metabolic control and its analysis. Extensions to the theory and matrix method. Eur J Biochem. 1987 May 15;165(1):215–221. doi: 10.1111/j.1432-1033.1987.tb11214.x. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J Theor Biol. 1970 Feb;26(2):215–226. doi: 10.1016/s0022-5193(70)80013-3. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol. 1969 Dec;25(3):365–369. doi: 10.1016/s0022-5193(69)80026-3. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Biochemical systems analysis. II. The steady-state solutions for an n-pool system using a power-law approximation. J Theor Biol. 1969 Dec;25(3):370–379. doi: 10.1016/s0022-5193(69)80027-5. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Concepts relating the behavior of biochemical systems to their underlying molecular properties. Arch Biochem Biophys. 1971 Aug;145(2):612–621. doi: 10.1016/s0003-9861(71)80021-8. [DOI] [PubMed] [Google Scholar]
- Savageau M. A. Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature. 1971 Feb 19;229(5286):542–544. doi: 10.1038/229542a0. [DOI] [PubMed] [Google Scholar]
- Schaaff I., Heinisch J., Zimmermann F. K. Overproduction of glycolytic enzymes in yeast. Yeast. 1989 Jul-Aug;5(4):285–290. doi: 10.1002/yea.320050408. [DOI] [PubMed] [Google Scholar]
- Schulz A. R. Algorithms for the derivation of Flux and Concentration Control Coefficients. Biochem J. 1991 Aug 15;278(Pt 1):299–304. doi: 10.1042/bj2780299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schuster R., Holzhütter H. G., Jacobasch G. Interrelations between glycolysis and the hexose monophosphate shunt in erythrocytes as studied on the basis of a mathematical model. Biosystems. 1988;22(1):19–36. doi: 10.1016/0303-2647(88)90047-0. [DOI] [PubMed] [Google Scholar]
- Sen A. K. Application of electrical analogues for control analysis of simple metabolic pathways. Biochem J. 1990 Nov 15;272(1):65–70. doi: 10.1042/bj2720065. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen A. K. Metabolic control analysis. An application of signal flow graphs. Biochem J. 1990 Jul 1;269(1):141–147. doi: 10.1042/bj2690141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sen A. K. Quantitative analysis of metabolic regulation. A graph-theoretic approach using spanning trees. Biochem J. 1991 Apr 1;275(Pt 1):253–258. doi: 10.1042/bj2750253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Small J. R., Fell D. A. Covalent modification and metabolic control analysis. Modification to the theorems and their application to metabolic systems containing covalently modifiable enzymes. Eur J Biochem. 1990 Jul 31;191(2):405–411. doi: 10.1111/j.1432-1033.1990.tb19136.x. [DOI] [PubMed] [Google Scholar]
- Small J. R., Fell D. A. Metabolic control analysis. Sensitivity of control coefficients to elasticities. Eur J Biochem. 1990 Jul 31;191(2):413–420. doi: 10.1111/j.1432-1033.1990.tb19137.x. [DOI] [PubMed] [Google Scholar]
- Small J. R., Fell D. A. The matrix method of metabolic control analysis: its validity for complex pathway structures. J Theor Biol. 1989 Jan 23;136(2):181–197. doi: 10.1016/s0022-5193(89)80225-5. [DOI] [PubMed] [Google Scholar]
- Snell K., Fell D. A. Metabolic control analysis of mammalian serine metabolism. Adv Enzyme Regul. 1990;30:13–32. doi: 10.1016/0065-2571(90)90006-n. [DOI] [PubMed] [Google Scholar]
- Sorribas A., Bartrons R. Theoretical analysis of the flux control properties of a substrate cycle. Eur J Biochem. 1986 Jul 1;158(1):107–115. doi: 10.1111/j.1432-1033.1986.tb09727.x. [DOI] [PubMed] [Google Scholar]
- Szedlacsek S. E., Cárdenas M. L., Cornish-Bowden A. Response coefficients of interconvertible enzyme cascades towards effectors that act on one or both modifier enzymes. Eur J Biochem. 1992 Mar 1;204(2):807–813. doi: 10.1111/j.1432-1033.1992.tb16699.x. [DOI] [PubMed] [Google Scholar]
- Thorburn D. R., Kuchel P. W. Regulation of the human-erythrocyte hexose-monophosphate shunt under conditions of oxidative stress. A study using NMR spectroscopy, a kinetic isotope effect, a reconstituted system and computer simulation. Eur J Biochem. 1985 Jul 15;150(2):371–386. doi: 10.1111/j.1432-1033.1985.tb09030.x. [DOI] [PubMed] [Google Scholar]
- Torres N. V., Mateo F., Meléndez-Hevia E., Kacser H. Kinetics of metabolic pathways. A system in vitro to study the control of flux. Biochem J. 1986 Feb 15;234(1):169–174. doi: 10.1042/bj2340169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Torres N. V., Mateo F., Riol-Cimas J. M., Meléndez-Hevia E. Control of glycolysis in rat liver by glucokinase and phosphofructokinase: influence of glucose concentration. Mol Cell Biochem. 1990 Mar 5;93(1):21–26. doi: 10.1007/BF00223488. [DOI] [PubMed] [Google Scholar]
- Torres N. V., Souto R., Meléndez-Hevia E. Study of the flux and transition time control coefficient profiles in a metabolic system in vitro and the effect of an external stimulator. Biochem J. 1989 Jun 15;260(3):763–769. doi: 10.1042/bj2600763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waley S. G. A note on the kinetics of multi-enzyme systems. Biochem J. 1964 Jun;91(3):514–517. doi: 10.1042/bj0910514. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh K., Koshland D. E., Jr Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3577–3581. doi: 10.1073/pnas.82.11.3577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh K., Schena M., Flint A. J., Koshland D. E., Jr Compensatory regulation in metabolic pathways--responses to increases and decreases in citrate synthase levels. Biochem Soc Symp. 1987;54:183–195. [PubMed] [Google Scholar]
- Walter R. P., Morris J. G., Kell D. B. The roles of osmotic stress and water activity in the inhibition of the growth, glycolysis and glucose phosphotransferase system of Clostridium pasteurianum. J Gen Microbiol. 1987 Feb;133(2):259–266. doi: 10.1099/00221287-133-2-259. [DOI] [PubMed] [Google Scholar]
- Wanders R. J., Van Roermund C. W., Meijer A. J. Analysis of the control of citrulline synthesis in isolated rat-liver mitochondria. Eur J Biochem. 1984 Jul 16;142(2):247–254. doi: 10.1111/j.1432-1033.1984.tb08278.x. [DOI] [PubMed] [Google Scholar]
- Welch G. R., Keleti T., Vértessy B. The control of cell metabolism for homogeneous vs. heterogeneous enzyme systems. J Theor Biol. 1988 Feb 21;130(4):407–422. doi: 10.1016/s0022-5193(88)80206-6. [DOI] [PubMed] [Google Scholar]
- Westerhoff H. V., Chen Y. D. How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur J Biochem. 1984 Jul 16;142(2):425–430. doi: 10.1111/j.1432-1033.1984.tb08304.x. [DOI] [PubMed] [Google Scholar]
- Westerhoff H. V., Groen A. K., Wanders R. J. Modern theories of metabolic control and their applications (review). Biosci Rep. 1984 Jan;4(1):1–22. doi: 10.1007/BF01120819. [DOI] [PubMed] [Google Scholar]
- van Dam K., Jansen N. Quantification of control of microbial metabolism by substrates and enzymes. Antonie Van Leeuwenhoek. 1991 Oct-Nov;60(3-4):209–223. doi: 10.1007/BF00430366. [DOI] [PubMed] [Google Scholar]


