Skip to main content
Biochemical Journal logoLink to Biochemical Journal
letter
. 1992 Sep 15;286(Pt 3):977–979. doi: 10.1042/bj2860977

Metabolite channeling versus free diffusion: reinterpretation of aldolase-catalysed inactivation of glyceraldehyde-3-phosphate dehydrogenase.

B G Vértessy, M Vas
PMCID: PMC1132998  PMID: 1417758

Full text

PDF
978

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batke J., Asbóth G., Lakatos S., Schmitt B., Cohen R. Substrate-induced dissociation of glycerol-3-phosphate dehydrogenase and its complex formation with fructose-bisphosphate aldolase. Eur J Biochem. 1980 Jun;107(2):389–394. doi: 10.1111/j.1432-1033.1980.tb06041.x. [DOI] [PubMed] [Google Scholar]
  2. Batke J. Channeling of glycolytic intermediates by temporary, stationary bi-enzyme complexes is probable in vivo. Trends Biochem Sci. 1989 Dec;14(12):481–482. doi: 10.1016/0968-0004(89)90179-5. [DOI] [PubMed] [Google Scholar]
  3. Batke J. Channelling by loose enzyme complexes in situ is likely, though physiological significance is open for speculation. J Theor Biol. 1991 Sep 7;152(1):41–46. doi: 10.1016/s0022-5193(05)80506-5. [DOI] [PubMed] [Google Scholar]
  4. Batke J. Remarks on the supramolecular organization of the glycolytic system in vivo. FEBS Lett. 1989 Jul 17;251(1-2):13–16. doi: 10.1016/0014-5793(89)81419-x. [DOI] [PubMed] [Google Scholar]
  5. Brooks S. P., Storey K. B. Re-evaluation of the glycerol-3-phosphate dehydrogenase/L-lactate dehydrogenase enzyme system. Evidence against the direct transfer of NADH between active sites. Biochem J. 1991 Sep 15;278(Pt 3):875–881. doi: 10.1042/bj2780875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chock P. B., Gutfreund H. Reexamination of the kinetics of the transfer of NADH between its complexes with glycerol-3-phosphate dehydrogenase and with lactate dehydrogenase. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8870–8874. doi: 10.1073/pnas.85.23.8870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Christen P., Cogoli-Greuter M., Healy M. J., Lubini D. Specific irreversible inhibition of enzymes concomitant to the oxidation of carbanionic enzyme-substrate intermediates by hexacyanoferrate (III). Eur J Biochem. 1976 Mar 16;63(1):223–231. doi: 10.1111/j.1432-1033.1976.tb10224.x. [DOI] [PubMed] [Google Scholar]
  8. Creighton D. J., Migliorini M., Pourmotabbed T., Guha M. K. Optimization of efficiency in the glyoxalase pathway. Biochemistry. 1988 Sep 20;27(19):7376–7384. doi: 10.1021/bi00419a031. [DOI] [PubMed] [Google Scholar]
  9. Datta A., Merz J. M., Spivey H. O. Substrate channeling of oxalacetate in solid-state complexes of malate dehydrogenase and citrate synthase. J Biol Chem. 1985 Dec 5;260(28):15008–15012. [PubMed] [Google Scholar]
  10. Ehrlich R. S. Absence of direct coenzyme transfer in an A-B dehydrogenase system. Biochem J. 1987 Nov 15;248(1):269–271. doi: 10.1042/bj2480269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Endre Z. H., Kuchel P. W. Viscosity of concentrated solutions and of human erythrocyte cytoplasm determined from NMR measurement of molecular correlation times. The dependence of viscosity on cell volume. Biophys Chem. 1986 Aug;24(3):337–356. doi: 10.1016/0301-4622(86)85039-6. [DOI] [PubMed] [Google Scholar]
  12. Friedrich P., Apró-Kovács V. A., Solti M. Study of metabolite compartmentation in erythrocyte glycolysis. FEBS Lett. 1977 Dec 1;84(1):183–186. doi: 10.1016/0014-5793(77)81085-5. [DOI] [PubMed] [Google Scholar]
  13. Jacobson K., Wojcieszyn J. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6747–6751. doi: 10.1073/pnas.81.21.6747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keleti T., Ovádi J., Batke J. Kinetic and physico-chemical analysis of enzyme complexes and their possible role in the control of metabolism. Prog Biophys Mol Biol. 1989;53(2):105–152. doi: 10.1016/0079-6107(89)90016-3. [DOI] [PubMed] [Google Scholar]
  15. Kvassman J., Pettersson G. Mechanism of 1,3-bisphosphoglycerate transfer from phosphoglycerate kinase to glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1989 Dec 8;186(1-2):265–272. doi: 10.1111/j.1432-1033.1989.tb15205.x. [DOI] [PubMed] [Google Scholar]
  16. Kvassman J., Pettersson G., Ryde-Pettersson U. Mechanism of glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1988 Mar 1;172(2):427–431. doi: 10.1111/j.1432-1033.1988.tb13905.x. [DOI] [PubMed] [Google Scholar]
  17. Leslie A. G., Wonacott A. J. Structural evidence for ligand-induced sequential conformational changes in glyceraldehyde 3-phosphate dehydrogenase. J Mol Biol. 1984 Sep 25;178(3):743–772. doi: 10.1016/0022-2836(84)90250-x. [DOI] [PubMed] [Google Scholar]
  18. Levine L., Ohuchi K. Retinoids as well as tumour promoters enhance deacylation of cellular lipids and prostaglandin production in MDCK cells. Nature. 1978 Nov 16;276(5685):274–275. doi: 10.1038/276274a0. [DOI] [PubMed] [Google Scholar]
  19. Lienhard G. E., Jencks W. P. Thiol addition to the carbonyl group. Equilibria and kinetics. J Am Chem Soc. 1966 Sep 5;88(17):3982–3994. doi: 10.1021/ja00969a017. [DOI] [PubMed] [Google Scholar]
  20. Masters C. J., Winzor D. J. Physicochemical evidence against the concept of an interaction between aldolase and glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys. 1981 Jun;209(1):185–190. doi: 10.1016/0003-9861(81)90271-x. [DOI] [PubMed] [Google Scholar]
  21. Mastro A. M., Babich M. A., Taylor W. D., Keith A. D. Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3414–3418. doi: 10.1073/pnas.81.11.3414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Orosz F., Ovádi J. A simple approach to identify the mechanism of intermediate transfer: enzyme system related to triose phosphate metabolism. Biochim Biophys Acta. 1987 Sep 2;915(1):53–59. doi: 10.1016/0167-4838(87)90124-5. [DOI] [PubMed] [Google Scholar]
  23. Ovádi J., Keleti T. Kinetic evidence for interaction between aldolase and D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1978 Apr;85(1):157–161. doi: 10.1111/j.1432-1033.1978.tb12223.x. [DOI] [PubMed] [Google Scholar]
  24. Ovádi J., Mohamed Osman I. R., Batke J. Interaction of the dissociable glycerol-3-phosphate dehydrogenase and fructose-1,6-bisphosphate aldolase. Quantitative analysis by an extrinsic fluorescence probe. Eur J Biochem. 1983 Jun 15;133(2):433–437. doi: 10.1111/j.1432-1033.1983.tb07482.x. [DOI] [PubMed] [Google Scholar]
  25. Ovádi J., Mátrai G., Bartha F., Batke J. Kinetic pathways of formation and dissociation of the glycerol-3-phosphate dehydrogenase-fructose-1,6-bisphosphate aldolase complex. Biochem J. 1985 Jul 1;229(1):57–62. doi: 10.1042/bj2290057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ovádi J., Salerno C., Keleti T., Fasella P. Physico-chemical evidence for the interaction between aldolase and glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1978 Oct 16;90(3):499–503. doi: 10.1111/j.1432-1033.1978.tb12629.x. [DOI] [PubMed] [Google Scholar]
  27. Patthy L. Role of nascent alpha-ketoaldehyde in substrate-dependent oxidative inactivation of aldolase. Eur J Biochem. 1978 Jul 17;88(1):191–196. doi: 10.1111/j.1432-1033.1978.tb12437.x. [DOI] [PubMed] [Google Scholar]
  28. Patthy L., Váradi A., Thész J., Kovács K. Identification of the C-1-phosphate-binding arginine residue of rabbit-muscle aldolase. Isolation of 1,2-cyclohexanedione-labeled peptide by chemisorption chromatography. Eur J Biochem. 1979 Sep;99(2):309–313. doi: 10.1111/j.1432-1033.1979.tb13258.x. [DOI] [PubMed] [Google Scholar]
  29. Rae C., Berners-Price S. J., Bulliman B. T., Kuchel P. W. Kinetic analysis of the human erythrocyte glyoxalase system using 1H NMR and a computer model. Eur J Biochem. 1990 Oct 5;193(1):83–90. doi: 10.1111/j.1432-1033.1990.tb19307.x. [DOI] [PubMed] [Google Scholar]
  30. Rognstad R. Evidence against tight channelling of NADH in hepatocytes. Arch Biochem Biophys. 1991 May 1;286(2):555–561. doi: 10.1016/0003-9861(91)90079-x. [DOI] [PubMed] [Google Scholar]
  31. Solti M., Friedrich P. The 'enzyme-probe' method for characterizing metabolite pools. The use of NAD-glycohydrolase in human erythrocyte sonicate as a model system. Eur J Biochem. 1979 Apr;95(3):551–559. doi: 10.1111/j.1432-1033.1979.tb12996.x. [DOI] [PubMed] [Google Scholar]
  32. Srere P. A. Enzyme concentrations in tissues. Science. 1967 Nov 17;158(3803):936–937. doi: 10.1126/science.158.3803.936. [DOI] [PubMed] [Google Scholar]
  33. Vander Jagt D. L., Daub E., Krohn J. A., Han L. P. Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism. Biochemistry. 1975 Aug 12;14(16):3669–3675. doi: 10.1021/bi00687a024. [DOI] [PubMed] [Google Scholar]
  34. Vas M., Batke J. Kinetic misinterpretation of a coupled enzyme reaction can lead to the assumption of an enzyme-enzyme interaction. The example of 3-phospho-D-glycerate kinase and glyceraldehyde-3-phosphate dehydrogenase couple. Eur J Biochem. 1990 Aug 17;191(3):679–683. doi: 10.1111/j.1432-1033.1990.tb19174.x. [DOI] [PubMed] [Google Scholar]
  35. Vértessy B. G., Orosz F., Ovádi J. Modulation of the interaction between aldolase and glycerol-phosphate dehydrogenase by fructose phosphates. Biochim Biophys Acta. 1991 Jun 24;1078(2):236–242. doi: 10.1016/0167-4838(91)90564-g. [DOI] [PubMed] [Google Scholar]
  36. Vértessy B., Ovádi J. A simple approach to detect active-site-directed enzyme-enzyme interactions. The aldolase/glycerol-phosphate-dehydrogenase enzyme system. Eur J Biochem. 1987 May 4;164(3):655–659. doi: 10.1111/j.1432-1033.1987.tb11176.x. [DOI] [PubMed] [Google Scholar]
  37. Wu X. M., Gutfreund H., Lakatos S., Chock P. B. Substrate channeling in glycolysis: a phantom phenomenon. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):497–501. doi: 10.1073/pnas.88.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES