Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1992 Oct 15;287(Pt 2):473–479. doi: 10.1042/bj2870473

A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast.

P Niederberger 1, R Prasad 1, G Miozzari 1, H Kacser 1
PMCID: PMC1133189  PMID: 1445205

Abstract

Decreases in enzyme activity often have little effect on the flux carried by the pathway. Similarly, up-modulation of single genes, and hence of the dependent enzyme concentrations, is frequently found to be ineffective in increasing the flux in the pathway in which the enzyme occurs. This insensitivity to enzyme variation is demonstrated experimentally for five separate enzymes in the tryptophan synthesis system of yeast, first by down-modulation of the gene dose and secondly by increasing the dose using multi-copy vectors. Such a lack of response is discussed in terms of the concepts of metabolic control analysis. When these five enzymes, however, were simultaneously increased by a multi-copy vector carrying all five genes, a substantial elevation of the flux to tryptophan was observed. These findings revealed a new phenomenon, namely the more than additive effects on the flux of simultaneous elevations of several enzyme activities.

Full text

PDF
473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acerenza L., Kacser H. Enzyme kinetics and metabolic control. A method to test and quantify the effect of enzymic properties on metabolic variables. Biochem J. 1990 Aug 1;269(3):697–707. doi: 10.1042/bj2690697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beggs J. D. Transformation of yeast by a replicating hybrid plasmid. Nature. 1978 Sep 14;275(5676):104–109. doi: 10.1038/275104a0. [DOI] [PubMed] [Google Scholar]
  3. Brown G. C., Hafner R. P., Brand M. D. A 'top-down' approach to the determination of control coefficients in metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):321–325. doi: 10.1111/j.1432-1033.1990.tb15406.x. [DOI] [PubMed] [Google Scholar]
  4. Fantes P. A., Roberts L. M., Huetter R. Free tryptophan pool and tryptophan biosynthetic enzymes in Saccharomyces cerevisiae. Arch Microbiol. 1976 Mar 19;107(2):207–214. doi: 10.1007/BF00446842. [DOI] [PubMed] [Google Scholar]
  5. Flint H. J., Porteous D. J., Kacser H. Control of the flux in the arginine pathway of Neurospora crassa. The flux from citrulline to arginine. Biochem J. 1980 Jul 15;190(1):1–15. doi: 10.1042/bj1900001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flint H. J., Tateson R. W., Barthelmess I. B., Porteous D. J., Donachie W. D., Kacser H. Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem J. 1981 Nov 15;200(2):231–246. doi: 10.1042/bj2000231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Furter R., Paravicini G., Aebi M., Braus G., Prantl F., Niederberger P., Hütter R. The TRP4 gene of Saccharomyces cerevisiae: isolation and structural analysis. Nucleic Acids Res. 1986 Aug 26;14(16):6357–6373. doi: 10.1093/nar/14.16.6357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldbeter A., Koshland D. E., Jr Sensitivity amplification in biochemical systems. Q Rev Biophys. 1982 Aug;15(3):555–591. doi: 10.1017/s0033583500003449. [DOI] [PubMed] [Google Scholar]
  9. Groen A. K., Wanders R. J., Westerhoff H. V., van der Meer R., Tager J. M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J Biol Chem. 1982 Mar 25;257(6):2754–2757. [PubMed] [Google Scholar]
  10. Hafner R. P., Brown G. C., Brand M. D. Analysis of the control of respiration rate, phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur J Biochem. 1990 Mar 10;188(2):313–319. doi: 10.1111/j.1432-1033.1990.tb15405.x. [DOI] [PubMed] [Google Scholar]
  11. Kacser H., Burns J. A. MOlecular democracy: who shares the controls? Biochem Soc Trans. 1979 Oct;7(5):1149–1160. doi: 10.1042/bst0071149. [DOI] [PubMed] [Google Scholar]
  12. Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
  13. Kacser H., Burns J. A. The molecular basis of dominance. Genetics. 1981 Mar-Apr;97(3-4):639–666. doi: 10.1093/genetics/97.3-4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kacser H., Sauro H. M., Acerenza L. Enzyme-enzyme interactions and control analysis. 1. The case of non-additivity: monomer-oligomer associations. Eur J Biochem. 1990 Feb 14;187(3):481–491. doi: 10.1111/j.1432-1033.1990.tb15329.x. [DOI] [PubMed] [Google Scholar]
  15. Kradolfer P., Niederberger P., Hütter R. Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch Microbiol. 1982 Dec 11;133(3):242–248. doi: 10.1007/BF00415010. [DOI] [PubMed] [Google Scholar]
  16. Middleton R. J., Kacser H. Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics. 1983 Nov;105(3):633–650. doi: 10.1093/genetics/105.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miozzari G. F., Niederberger P., Hütter R. Permeabilization of microorganisms by Triton X-100. Anal Biochem. 1978 Oct 1;90(1):220–233. doi: 10.1016/0003-2697(78)90026-x. [DOI] [PubMed] [Google Scholar]
  18. Miozzari G., Niederberger P., Hütter R. Tryptophan biosynthesis in Saccharomyces cerevisiae: control of the flux through the pathway. J Bacteriol. 1978 Apr;134(1):48–59. doi: 10.1128/jb.134.1.48-59.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Niederberger P., Aebi M., Furter R., Prantl F., Hütter R. Expression of an artificial yeast TRP-gene cluster in yeast and Escherichia coli. Mol Gen Genet. 1984;195(3):481–486. doi: 10.1007/BF00341450. [DOI] [PubMed] [Google Scholar]
  20. Niederberger P., Miozzari G., Hütter R. Biological role of the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Mol Cell Biol. 1981 Jul;1(7):584–593. doi: 10.1128/mcb.1.7.584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Prantl F., Strasser A., Aebi M., Furter R., Niederberger P., Kirschner K., Huetter R. Purification and characterization of the indole-3-glycerolphosphate synthase/anthranilate synthase complex of Saccharomyces cerevisiae. Eur J Biochem. 1985 Jan 2;146(1):95–100. doi: 10.1111/j.1432-1033.1985.tb08624.x. [DOI] [PubMed] [Google Scholar]
  22. Prasad R., Niederberger P., Hütter R. Tryptophan accumulation in Saccharomyces cerevisiae under the influence of an artificial yeast TRP gene cluster. Yeast. 1987 Jun;3(2):95–105. doi: 10.1002/yea.320030206. [DOI] [PubMed] [Google Scholar]
  23. Rapoport T. A., Heinrich R., Jacobasch G., Rapoport S. A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur J Biochem. 1974 Feb 15;42(1):107–120. doi: 10.1111/j.1432-1033.1974.tb03320.x. [DOI] [PubMed] [Google Scholar]
  24. Salter M., Knowles R. G., Pogson C. I. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism. Biochem J. 1986 Mar 15;234(3):635–647. doi: 10.1042/bj2340635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaaff I., Heinisch J., Zimmermann F. K. Overproduction of glycolytic enzymes in yeast. Yeast. 1989 Jul-Aug;5(4):285–290. doi: 10.1002/yea.320050408. [DOI] [PubMed] [Google Scholar]
  26. Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Teshiba S., Furter R., Niederberger P., Braus G., Paravicini G., Hütter R. Cloning of the ARO3 gene of Saccharomyces cerevisiae and its regulation. Mol Gen Genet. 1986 Nov;205(2):353–357. doi: 10.1007/BF00430450. [DOI] [PubMed] [Google Scholar]
  28. Walsh K., Koshland D. E., Jr Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3577–3581. doi: 10.1073/pnas.82.11.3577. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES