Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 1;264(2):597–599. doi: 10.1042/bj2640597

Liver tryptophan pyrrolase. A major determinant of the lower brain 5-hydroxytryptamine concentration in alcohol-preferring C57BL mice.

A A Badawy 1, C J Morgan 1, J Lane 1, K Dhaliwal 1, D M Bradley 1
PMCID: PMC1133620  PMID: 2481450

Abstract

The lower brain 5-hydroxytryptamine concentration in alcohol-preferring C57BL, compared with -non-preferring CBA, mice is caused by a decrease in circulating tryptophan availability to the brain secondarily to a higher liver tryptophan pyrrolase activity associated with a higher circulating corticosterone concentration. Activity or expression of liver tryptophan pyrrolase and/or their induction by glucocorticoids may be important biological determinants of predisposition to alcohol consumption.

Full text

PDF
598

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badawy A. A. Central role of tryptophan pyrrolase in haem metabolism. Biochem Soc Trans. 1979 Jun;7(3):575–583. doi: 10.1042/bst0070575. [DOI] [PubMed] [Google Scholar]
  2. Badawy A. A., Evans M. Animal liver tryptophan pyrrolases: Absence of apoenzyme and of hormonal induction mechanism from species sensitive to tryptophan toxicity. Biochem J. 1976 Jul 15;158(1):79–88. doi: 10.1042/bj1580079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Badawy A. A., Evans M. Regulation of rat liver tryptophan pyrrolase by its cofactor haem: Experiments with haematin and 5-aminolaevulinate and comparison with the substrate and hormonal mechanisms. Biochem J. 1975 Sep;150(3):511–520. doi: 10.1042/bj1500511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Badawy A. A. Heme utilization by rat liver tryptophan pyrrolase as a screening test for exacerbation of hepatic porphyrias by drugs. J Pharmacol Methods. 1981 Sep;6(2):77–85. doi: 10.1016/0160-5402(81)90030-9. [DOI] [PubMed] [Google Scholar]
  5. Badawy A. A. The effects of salicylate on the activity of rat liver tyrosine-2-oxoglutarate aminotransferase in vitro and in vivo. Biochem J. 1972 Jan;126(2):347–350. doi: 10.1042/bj1260347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Badawy A. A. The functions and regulation of tryptophan pyrrolase. Life Sci. 1977 Sep 15;21(6):755–768. doi: 10.1016/0024-3205(77)90402-7. [DOI] [PubMed] [Google Scholar]
  7. Branchey L., Branchey M., Shaw S., Lieber C. S. Depression, suicide, and aggression in alcoholics and their relationship to plasma amino acids. Psychiatry Res. 1984 Jul;12(3):219–226. doi: 10.1016/0165-1781(84)90027-1. [DOI] [PubMed] [Google Scholar]
  8. Carlsson A., Lindqvist M. Dependence of 5-HT and catecholamine synthesis on concentrations of precursor amino-acids in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jun;303(2):157–164. doi: 10.1007/BF00508062. [DOI] [PubMed] [Google Scholar]
  9. Curzon G., Green A. R. Rapid method for the determination of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in small regions of rat brain. Br J Pharmacol. 1970 Jul;39(3):653–655. doi: 10.1111/j.1476-5381.1970.tb10373.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Curzon G., Knott P. J. Effects on plasma and brain tryptophan in the rat of drugs and hormones that influence the concentration of unesterified fatty acid in the plasma. Br J Pharmacol. 1974 Feb;50(2):197–204. doi: 10.1111/j.1476-5381.1974.tb08562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curzon G. Relationships between plasma, CSF and brain tryptophan. J Neural Transm Suppl. 1979;(15):81–92. doi: 10.1007/978-3-7091-2243-3_7. [DOI] [PubMed] [Google Scholar]
  12. Fernstrom J. D., Wurtman R. J. Brain serotonin content: physiological dependence on plasma tryptophan levels. Science. 1971 Jul 9;173(3992):149–152. doi: 10.1126/science.173.3992.149. [DOI] [PubMed] [Google Scholar]
  13. GLICK D., VONREDLICH D., LEVINE S. FLUOROMETRIC DETERMINATION OF CORTICOSTERONE AND CORTISOL IN 0.02-0.05 MILLILITERS OF PLASMA OR SUBMILLIGRAM SAMPLES OF ADRENAL TISSUE. Endocrinology. 1964 Apr;74:653–655. doi: 10.1210/endo-74-4-653. [DOI] [PubMed] [Google Scholar]
  14. Hirota T., Hirota K., Sanno Y., Tanaka T. A new glucocorticoid receptor species: relation to induction of tryptophan dioxygenase by glucocorticoids. Endocrinology. 1985 Nov;117(5):1788–1795. doi: 10.1210/endo-117-5-1788. [DOI] [PubMed] [Google Scholar]
  15. Korpi E. R., Sinclair J. D., Kaheinen P., Viitamaa T., Hellevuo K., Kiianmaa K. Brain regional and adrenal monoamine concentrations and behavioral responses to stress in alcohol-preferring AA and alcohol-avoiding ANA rats. Alcohol. 1988 Sep-Oct;5(5):417–425. doi: 10.1016/0741-8329(88)90030-4. [DOI] [PubMed] [Google Scholar]
  16. Monroe C. B. Induction of tryptophan oxygenase and tyrosine aminotransferase in mice. Am J Physiol. 1968 Jun;214(6):1410–1414. doi: 10.1152/ajplegacy.1968.214.6.1410. [DOI] [PubMed] [Google Scholar]
  17. Murphy J. M., McBride W. J., Lumeng L., Li T. K. Alcohol preference and regional brain monoamine contents of N/Nih heterogeneous stock rats. Alcohol Drug Res. 1987;7(1):33–39. [PubMed] [Google Scholar]
  18. Murphy J. M., McBride W. J., Lumeng L., Li T. K. Contents of monoamines in forebrain regions of alcohol-preferring (P) and -nonpreferring (NP) lines of rats. Pharmacol Biochem Behav. 1987 Feb;26(2):389–392. doi: 10.1016/0091-3057(87)90134-1. [DOI] [PubMed] [Google Scholar]
  19. Naranjo C. A., Sellers E. M., Lawrin M. O. Modulation of ethanol intake by serotonin uptake inhibitors. J Clin Psychiatry. 1986 Apr;47 (Suppl):16–22. [PubMed] [Google Scholar]
  20. Naranjo C. A., Sellers E. M., Sullivan J. T., Woodley D. V., Kadlec K., Sykora K. The serotonin uptake inhibitor citalopram attenuates ethanol intake. Clin Pharmacol Ther. 1987 Mar;41(3):266–274. doi: 10.1038/clpt.1987.27. [DOI] [PubMed] [Google Scholar]
  21. Pispa J. P., Huttunen M. O., Sarviharju M., Ylikahri R. Enzymes of catecholamine metabolism in the brains of rat strains differing in their preference for or tolerance of ethanol. Alcohol Alcohol. 1986;21(2):181–184. [PubMed] [Google Scholar]
  22. Serri G. A., Ely D. L. A comparative study of aggression related changes in brain serotonin in CBA, C57BL, and DBA mice. Behav Brain Res. 1984 Jun;12(3):283–289. doi: 10.1016/0166-4328(84)90154-2. [DOI] [PubMed] [Google Scholar]
  23. Thomson S. M., Jr, McMillen B. A. Test for decreased serotonin/tryptophan metabolite ratios in abstinent alcoholics. Alcohol. 1987 Jan-Feb;4(1):1–5. doi: 10.1016/0741-8329(87)90051-6. [DOI] [PubMed] [Google Scholar]
  24. Yoshimoto K., Komura S. Reexamination of the relationship between alcohol preference and brain monoamines in inbred strains of mice including senescence-accelerated mice. Pharmacol Biochem Behav. 1987 Jun;27(2):317–322. doi: 10.1016/0091-3057(87)90575-2. [DOI] [PubMed] [Google Scholar]
  25. Zimmer J., Geneser F. A. Difference in monoamine oxidase B activity between C57 black and albino NMRI mouse strains may explain differential effects of the neurotoxin MPTP. Neurosci Lett. 1987 Aug 5;78(3):253–258. doi: 10.1016/0304-3940(87)90369-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES