Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Dec 15;264(3):753–758. doi: 10.1042/bj2640753

The role of protein kinase C in cholinergic stimulation of insulin secretion from rat islets of Langerhans.

S J Persaud 1, P M Jones 1, D Sugden 1, S L Howell 1
PMCID: PMC1133649  PMID: 2695065

Abstract

The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.

Full text

PDF
758

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Dawson R. M., Downes C. P., Heslop J. P., Irvine R. F. Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides. Biochem J. 1983 May 15;212(2):473–482. doi: 10.1042/bj2120473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  3. Best L., Malaisse W. J. Stimulation of phosphoinositide breakdown in rat pancreatic islets by glucose and carbamylcholine. Biochem Biophys Res Commun. 1983 Oct 14;116(1):9–16. doi: 10.1016/0006-291x(83)90373-x. [DOI] [PubMed] [Google Scholar]
  4. Biden T. J., Vallar L., Wollheim C. B. Regulation of inositol 1,4,5-trisphosphate metabolism in insulin-secreting RINm5F cells. Biochem J. 1988 Apr 15;251(2):435–440. doi: 10.1042/bj2510435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bjaaland T., Jones P. M., Howell S. L. Role of intracellular mediators in glucagon secretion: studies using intact and electrically permeabilized rat islets of Langerhans. J Mol Endocrinol. 1988 Nov;1(3):171–178. doi: 10.1677/jme.0.0010171. [DOI] [PubMed] [Google Scholar]
  6. Gagerman E., Idahl L. A., Meissner H. P., Täljedal I. B. Insulin release, cGMP, cAMP, and membrane potential in acetylcholine-stimulated islets. Am J Physiol. 1978 Nov;235(5):E493–E500. doi: 10.1152/ajpendo.1978.235.5.E493. [DOI] [PubMed] [Google Scholar]
  7. Garcia M. C., Hermans M. P., Henquin J. C. Glucose-, calcium- and concentration-dependence of acetylcholine stimulation of insulin release and ionic fluxes in mouse islets. Biochem J. 1988 Aug 15;254(1):211–218. doi: 10.1042/bj2540211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hallberg A. Dissociation of phosphatidylinositol hydrolysis and insulin secretion of cultured mouse pancreatic islets. Acta Physiol Scand. 1986 Oct;128(2):267–276. doi: 10.1111/j.1748-1716.1986.tb07975.x. [DOI] [PubMed] [Google Scholar]
  9. Henquin J. C., Garcia M. C., Bozem M., Hermans M. P., Nenquin M. Muscarinic control of pancreatic B cell function involves sodium-dependent depolarization and calcium influx. Endocrinology. 1988 May;122(5):2134–2142. doi: 10.1210/endo-122-5-2134. [DOI] [PubMed] [Google Scholar]
  10. Henquin J. C., Nenquin M. The muscarinic receptor subtype in mouse pancreatic B-cells. FEBS Lett. 1988 Aug 15;236(1):89–92. doi: 10.1016/0014-5793(88)80290-4. [DOI] [PubMed] [Google Scholar]
  11. Hermans M. P., Schmeer W., Henquin J. C. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells. Endocrinology. 1987 May;120(5):1765–1773. doi: 10.1210/endo-120-5-1765. [DOI] [PubMed] [Google Scholar]
  12. Hii C. S., Jones P. M., Persaud S. J., Howell S. L. A re-assessment of the role of protein kinase C in glucose-stimulated insulin secretion. Biochem J. 1987 Sep 1;246(2):489–493. doi: 10.1042/bj2460489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hubinont C. J., Best L., Sener A., Malaisse W. J. Activation of protein kinase C by a tumor-promoting phorbol ester in pancreatic islets. FEBS Lett. 1984 May 21;170(2):247–253. doi: 10.1016/0014-5793(84)81322-8. [DOI] [PubMed] [Google Scholar]
  14. Hughes S. J., Christie M. R., Ashcroft S. J. Potentiators of insulin secretion modulate Ca2+ sensitivity in rat pancreatic islets. Mol Cell Endocrinol. 1987 Apr;50(3):231–236. doi: 10.1016/0303-7207(87)90021-9. [DOI] [PubMed] [Google Scholar]
  15. Jones P. M., Salmon D. M., Howell S. L. Protein phosphorylation in electrically permeabilized islets of Langerhans. Effects of Ca2+, cyclic AMP, a phorbol ester and noradrenaline. Biochem J. 1988 Sep 1;254(2):397–403. doi: 10.1042/bj2540397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jones P. M., Stutchfield J., Howell S. L. Effects of Ca2+ and a phorbol ester on insulin secretion from islets of Langerhans permeabilised by high-voltage discharge. FEBS Lett. 1985 Oct 21;191(1):102–106. doi: 10.1016/0014-5793(85)81002-4. [DOI] [PubMed] [Google Scholar]
  17. Lord J. M., Ashcroft S. J. Identification and characterization of Ca2+-phospholipid-dependent protein kinase in rat islets and hamster beta-cells. Biochem J. 1984 Apr 15;219(2):547–551. doi: 10.1042/bj2190547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lynch C. J., Charest R., Bocckino S. B., Exton J. H., Blackmore P. F. Inhibition of hepatic alpha 1-adrenergic effects and binding by phorbol myristate acetate. J Biol Chem. 1985 Mar 10;260(5):2844–2851. [PubMed] [Google Scholar]
  19. Malaisse W. J., Dunlop M. E., Mathias P. C., Malaisse-Lagae F., Sener A. Stimulation of protein kinase C and insulin release by 1-oleoyl-2-acetyl-glycerol. Eur J Biochem. 1985 May 15;149(1):23–27. doi: 10.1111/j.1432-1033.1985.tb08887.x. [DOI] [PubMed] [Google Scholar]
  20. Malaisse W., Malaisse-Lagae F., Wright P. H., Ashmore J. Effects of adrenergic and cholinergic agents upon insulin secretion in vitro. Endocrinology. 1967 May;80(5):975–978. doi: 10.1210/endo-80-5-975. [DOI] [PubMed] [Google Scholar]
  21. Mathias P. C., Carpinelli A. R., Billaudel B., Garcia-Morales P., Valverde I., Malaisse W. J. Cholinergic stimulation of ion fluxes in pancreatic islets. Biochem Pharmacol. 1985 Oct 1;34(19):3451–3457. doi: 10.1016/0006-2952(85)90717-8. [DOI] [PubMed] [Google Scholar]
  22. Meglasson M. D., Najafi H., Matschinsky F. M. Acetylcholine stimulates glucose metabolism by pancreatic islets. Life Sci. 1986 Nov 10;39(19):1745–1750. doi: 10.1016/0024-3205(86)90093-7. [DOI] [PubMed] [Google Scholar]
  23. Metz S. A. Perspectives in diabetes. Is protein kinase C required for physiologic insulin release? Diabetes. 1988 Jan;37(1):3–7. doi: 10.2337/diab.37.1.3. [DOI] [PubMed] [Google Scholar]
  24. Miller R. E. Pancreatic neuroendocrinology: peripheral neural mechanisms in the regulation of the Islets of Langerhans. Endocr Rev. 1981 Fall;2(4):471–494. doi: 10.1210/edrv-2-4-471. [DOI] [PubMed] [Google Scholar]
  25. Morgan N. G., Rumford G. M., Montague W. Studies on the role of inositol trisphosphate in the regulation of insulin secretion from isolated rat islets of Langerhans. Biochem J. 1985 Jun 15;228(3):713–718. doi: 10.1042/bj2280713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nenquin M., Awouters P., Mathot F., Henquin J. C. Distinct effects of acetylcholine and glucose on 45calcium and 86rubidium efflux from mouse pancreatic islets. FEBS Lett. 1984 Oct 29;176(2):457–461. doi: 10.1016/0014-5793(84)81218-1. [DOI] [PubMed] [Google Scholar]
  27. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  28. Orellana S., Solski P. A., Brown J. H. Guanosine 5'-O-(thiotriphosphate)-dependent inositol trisphosphate formation in membranes is inhibited by phorbol ester and protein kinase C. J Biol Chem. 1987 Feb 5;262(4):1638–1643. [PubMed] [Google Scholar]
  29. Persaud S. J., Jones P. M., Sugden D., Howell S. L. Translocation of protein kinase C in rat islets of Langerhans. Effects of a phorbol ester, carbachol and glucose. FEBS Lett. 1989 Mar 13;245(1-2):80–84. doi: 10.1016/0014-5793(89)80196-6. [DOI] [PubMed] [Google Scholar]
  30. Peter-Riesch B., Fathi M., Schlegel W., Wollheim C. B. Glucose and carbachol generate 1,2-diacylglycerols by different mechanisms in pancreatic islets. J Clin Invest. 1988 Apr;81(4):1154–1161. doi: 10.1172/JCI113430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tanigawa K., Kuzuya H., Imura H., Taniguchi H., Baba S., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase in rat pancreas islets of langerhans. Its possible role in glucose-induced insulin release. FEBS Lett. 1982 Feb 22;138(2):183–186. doi: 10.1016/0014-5793(82)80436-5. [DOI] [PubMed] [Google Scholar]
  32. Wollheim C. B., Biden T. J. Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells. J Biol Chem. 1986 Jun 25;261(18):8314–8319. [PubMed] [Google Scholar]
  33. Yamatani T., Chiba T., Kadowaki S., Hishikawa R., Yamaguchi A., Inui T., Fujita T., Kawazu S. Dual action of protein kinase C activation in the regulation of insulin release by muscarinic agonist from rat insulinoma cell line (RINr). Endocrinology. 1988 Jun;122(6):2826–2832. doi: 10.1210/endo-122-6-2826. [DOI] [PubMed] [Google Scholar]
  34. Young S., Parker P. J., Ullrich A., Stabel S. Down-regulation of protein kinase C is due to an increased rate of degradation. Biochem J. 1987 Jun 15;244(3):775–779. doi: 10.1042/bj2440775. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES