Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Jul 1;293(Pt 1):203–206. doi: 10.1042/bj2930203

Selective inhibition of mitochondrial 27-hydroxylation of bile acid intermediates and 25-hydroxylation of vitamin D3 by cyclosporin A.

H Dahlbäck-Sjöberg 1, I Björkhem 1, H M Princen 1
PMCID: PMC1134340  PMID: 8392332

Abstract

It was demonstrated recently that cyclosporin A blocks bile acid synthesis in cultured rat and human hepatocytes by specific inhibition of chenodeoxycholic acid formation. The site of inhibition was found to be the 27-hydroxylation of cholesterol catalysed by the liver mitochondrial 27-hydroxylase [Princen, Meijer, Wolthers, Vonk and Kuipers (1991) Biochem J. 275, 501-505]. In this paper the mechanism by which cyclosporin A blocks mitochondrial 27-hydroxylation was further investigated. It is shown that cyclosporin A inhibited 27-hydroxylation of bile acid intermediates, depending on their polarity. In isolated rat liver mitochondria, 27-hydroxylation of cholesterol was dose-dependently blocked by the drug, giving half-maximal inhibition at 4 microM, whereas 27-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol was not affected. A similar observation was made using electrophoretically homogeneous cytochrome P-450(27) isolated from rabbit liver mitochondria, excluding the possibility that cyclosporin A interfered with transport of substrates into the mitochondrion. Kinetic studies showed that inhibition of the 27-hydroxylation of cholesterol by cyclosporin A was of a non-competitive type. The drug also inhibited the 25-hydroxylase activity towards vitamin D3, catalysed by the same enzyme preparation, to the same extent as 27-hydroxylation of cholesterol. These results suggest that cyclosporin A may interfere with binding of cholesterol, but not of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol, to the active site of the enzyme. These data provide an explanation for the selective inhibition of chenodeoxycholic acid synthesis.

Full text

PDF
204

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. E., Kok E., Javitt N. B. Bile acid synthesis in man: metabolism of 7 -hydroxycholesterol- 14 C and 26-hydroxycholesterol- 3 H. J Clin Invest. 1972 Jan;51(1):112–117. doi: 10.1172/JCI106780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersson S., Boström H., Danielsson H., Wikvall K. Purification from rabbit and rat liver of cytochromes P-450 involved in bile acid biosynthesis. Methods Enzymol. 1985;111:364–377. doi: 10.1016/s0076-6879(85)11023-2. [DOI] [PubMed] [Google Scholar]
  3. Andersson S., Davis D. L., Dahlbäck H., Jörnvall H., Russell D. W. Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J Biol Chem. 1989 May 15;264(14):8222–8229. [PubMed] [Google Scholar]
  4. Axelson M., Sjövall J. Potential bile acid precursors in plasma--possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J Steroid Biochem. 1990 Aug 28;36(6):631–640. doi: 10.1016/0022-4731(90)90182-r. [DOI] [PubMed] [Google Scholar]
  5. Björkhem I., Gustafsson J., Johansson G., Persson B. Biosynthesis of bile acids in man. Hydroxylation of the C27-steroid side chain. J Clin Invest. 1975 Mar;55(3):478–486. doi: 10.1172/JCI107954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Björkhem I., Gustafsson J. Mitochondrial omega-hydroxylation of cholesterol side chain. J Biol Chem. 1974 Apr 25;249(8):2528–2535. [PubMed] [Google Scholar]
  7. Björkhem I., Gustafsson J. Omega-hydroxylation of steriod side-chain in biosynthesis of bile acids. Eur J Biochem. 1973 Jul 2;36(1):201–212. doi: 10.1111/j.1432-1033.1973.tb02902.x. [DOI] [PubMed] [Google Scholar]
  8. Björkhem I. Mechanism of degradation of the steroid side chain in the formation of bile acids. J Lipid Res. 1992 Apr;33(4):455–471. [PubMed] [Google Scholar]
  9. Broekemeier K. M., Dempsey M. E., Pfeiffer D. R. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem. 1989 May 15;264(14):7826–7830. [PubMed] [Google Scholar]
  10. Cali J. J., Hsieh C. L., Francke U., Russell D. W. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991 Apr 25;266(12):7779–7783. [PMC free article] [PubMed] [Google Scholar]
  11. Cali J. J., Russell D. W. Characterization of human sterol 27-hydroxylase. A mitochondrial cytochrome P-450 that catalyzes multiple oxidation reaction in bile acid biosynthesis. J Biol Chem. 1991 Apr 25;266(12):7774–7778. [PubMed] [Google Scholar]
  12. Cronholm T., Einarsson K., Gustafsson J. A. Changes in in vivo metabolism of bile acids in rat after treatment with phenobarbital. Lipids. 1974 Nov;9(11):844–849. doi: 10.1007/BF02532607. [DOI] [PubMed] [Google Scholar]
  13. Cronholm T., Johansson G. Oxidation of 5 beta-cholestane-3alpha, 7alpha, 12alpha-triol by rat liver microsomes. Eur J Biochem. 1970 Oct;16(2):373–381. doi: 10.1111/j.1432-1033.1970.tb01091.x. [DOI] [PubMed] [Google Scholar]
  14. Dahlbäck H. Characterization of the liver mitochondrial cytochrome P-450 catalyzing the 26-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. Biochem Biophys Res Commun. 1988 Nov 30;157(1):30–36. doi: 10.1016/s0006-291x(88)80006-8. [DOI] [PubMed] [Google Scholar]
  15. Dahlbäck H., Wikvall K. 25-Hydroxylation of vitamin D3 by a cytochrome P-450 from rabbit liver mitochondria. Biochem J. 1988 May 15;252(1):207–213. doi: 10.1042/bj2520207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Danielsson H., Sjövall J. Bile acid metabolism. Annu Rev Biochem. 1975;44:233–253. doi: 10.1146/annurev.bi.44.070175.001313. [DOI] [PubMed] [Google Scholar]
  17. DeLuca H. F., Schnoes H. K. Metabolism and mechanism of action of vitamin D. Annu Rev Biochem. 1976;45:631–666. doi: 10.1146/annurev.bi.45.070176.003215. [DOI] [PubMed] [Google Scholar]
  18. Gamble W., Vaughan M., Kruth H. S., Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8):1068–1070. [PubMed] [Google Scholar]
  19. Gustafsson J. On the heterogeneity of the mitochondrial C27-steroid 26-hydroxylase system. J Lipid Res. 1976 Jul;17(4):366–372. [PubMed] [Google Scholar]
  20. Hansson R., Wikvall K. Properties of reconstituted cholesterol 7 alpha-hydroxylase system from rat and rabbit liver microsomes. Eur J Biochem. 1979 Jan 15;93(2):419–426. doi: 10.1111/j.1432-1033.1979.tb12838.x. [DOI] [PubMed] [Google Scholar]
  21. Kuipers F., Havinga R., Huijsmans C. M., Vonk R. J., Princen H. M. Inhibition and induction of bile acid synthesis by ketoconazole. Effects on bile formation in the rat. Lipids. 1989 Sep;24(9):759–764. doi: 10.1007/BF02544580. [DOI] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Mitropoulos K. A., Avery M. D., Myant N. B., Gibbons G. F. The formation of cholest-5-ene-3 ,26-diol as an intermediate in the conversion of cholesterol into bile acids by liver mitochondria. Biochem J. 1972 Nov;130(2):363–371. doi: 10.1042/bj1300363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Oftebro H., Björkhem I., Skrede S., Schreiner A., Pederson J. I. Cerebrotendinous xanthomatosis: a defect in mitochondrial 26-hydroxylation required for normal biosynthesis of cholic acid. J Clin Invest. 1980 Jun;65(6):1418–1430. doi: 10.1172/JCI109806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Popják G., Edmond J., Anet F. A., Easton N. R., Jr Carbon-13 NMR studies on cholesterol biosynthesized from [13C]mevalonates. J Am Chem Soc. 1977 Feb 2;99(3):931–935. doi: 10.1021/ja00445a041. [DOI] [PubMed] [Google Scholar]
  26. Princen H. M., Meijer P., Hofstee B. Dexamethasone regulates bile acid synthesis in monolayer cultures of rat hepatocytes by induction of cholesterol 7 alpha-hydroxylase. Biochem J. 1989 Aug 15;262(1):341–348. doi: 10.1042/bj2620341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Princen H. M., Meijer P., Kwekkeboom J., Kempen H. J. Assay of cholesterol 7 alpha-hydroxylase activity in rat hepatocytes in primary monolayer culture. Anal Biochem. 1988 May 15;171(1):158–165. doi: 10.1016/0003-2697(88)90137-6. [DOI] [PubMed] [Google Scholar]
  28. Princen H. M., Meijer P., Wolthers B. G., Vonk R. J., Kuipers F. Cyclosporin A blocks bile acid synthesis in cultured hepatocytes by specific inhibition of chenodeoxycholic acid synthesis. Biochem J. 1991 Apr 15;275(Pt 2):501–505. doi: 10.1042/bj2750501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wikvall K. Hydroxylations in biosynthesis of bile acids. Isolation of a cytochrome P-450 from rabbit liver mitochondria catalyzing 26-hydroxylation of C27-steroids. J Biol Chem. 1984 Mar 25;259(6):3800–3804. [PubMed] [Google Scholar]
  30. de Groen P. C. Cyclosporine, low-density lipoprotein, and cholesterol. Mayo Clin Proc. 1988 Oct;63(10):1012–1021. doi: 10.1016/s0025-6196(12)64916-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES