Abstract
We have examined the effect of non-enzymic glycation of native soluble collagen, in solution or in gels, on binding of oxidized low-density lipoprotein (LDL). We found the following. (1) Glycation markedly inhibited binding of LDL. This is contrary to results previously reported; the difference may be attributable to the use of detergent- and heat-denatured collagen, covalently bound to agarose beads, in the earlier study. (2) With increased duration of glycation, collagen solution would not gel, and preformed gels dissolved. (3) [14C]Glucose bound to collagen gels dissociated slowly, even at pH 5, suggesting that it was not present as a Schiff's base; in addition, ketoamines, pentosidine and fluorescent advanced glycation products were not detectable in glycated collagen gels, although they accumulated in tendon collagen glycated under the same conditions. It is hypothesized that the difference in glycation effects between gel and tendon may be due to the strength of cross-linking before glycation: the increase in intermolecular distance in collagen fibrils which results from glycation disrupts the fibrils in gels, preventing binding of LDL and formation of glycation-dependent cross-links, whereas the extensive cross-linking in tendon maintains the intermolecular distances within a range which permits formation of glycation cross-links.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brownlee M., Cerami A., Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med. 1988 May 19;318(20):1315–1321. doi: 10.1056/NEJM198805193182007. [DOI] [PubMed] [Google Scholar]
- Brownlee M., Vlassara H., Cerami A. Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes. 1985 Sep;34(9):938–941. doi: 10.2337/diab.34.9.938. [DOI] [PubMed] [Google Scholar]
- Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
- Elsdale T., Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972 Sep;54(3):626–637. doi: 10.1083/jcb.54.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flückiger R., Winterhalter K. H. In vitro synthesis of hemoglobin AIc. FEBS Lett. 1976 Dec 1;71(2):356–360. doi: 10.1016/0014-5793(76)80969-6. [DOI] [PubMed] [Google Scholar]
- Fujimori E. Cross-linking and fluorescence changes of collagen by glycation and oxidation. Biochim Biophys Acta. 1989 Oct 5;998(2):105–110. doi: 10.1016/0167-4838(89)90260-4. [DOI] [PubMed] [Google Scholar]
- Haberland M. E., Fogelman A. M., Edwards P. A. Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoproteins. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1712–1716. doi: 10.1073/pnas.79.6.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayashi T., Nagai Y. Factors affecting the interactions of collagen molecules as observed by in vitro fibril formation. I. Effects of small molecules, especially saccharides. J Biochem. 1972 Sep;72(3):749–758. doi: 10.1093/oxfordjournals.jbchem.a129953. [DOI] [PubMed] [Google Scholar]
- Hicks M., Delbridge L., Yue D. K., Reeve T. S. Catalysis of lipid peroxidation by glucose and glycosylated collagen. Biochem Biophys Res Commun. 1988 Mar 15;151(2):649–655. doi: 10.1016/s0006-291x(88)80330-9. [DOI] [PubMed] [Google Scholar]
- Hoover G. A., McCormick S., Kalant N. Interaction of native and cell-modified low density lipoprotein with collagen gel. Arteriosclerosis. 1988 Sep-Oct;8(5):525–534. doi: 10.1161/01.atv.8.5.525. [DOI] [PubMed] [Google Scholar]
- Howard C. F., Jr, Vesselinovitch D., Wissler R. W. Correlations of aortic histology with gross aortic atherosclerosis and metabolic measurements in diabetic and nondiabetic Macaca nigra. Atherosclerosis. 1984 Jul;52(1):85–100. doi: 10.1016/0021-9150(84)90158-8. [DOI] [PubMed] [Google Scholar]
- Hunt J. V., Dean R. T., Wolff S. P. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J. 1988 Nov 15;256(1):205–212. doi: 10.1042/bj2560205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichida T., Kalant N. Aortic glycosaminoglycans in atheroma and alloxan diabetes. Can J Biochem. 1968 Mar;46(3):249–260. doi: 10.1139/o68-036. [DOI] [PubMed] [Google Scholar]
- Jürgens G., Lang J., Esterbauer H. Modification of human low-density lipoprotein by the lipid peroxidation product 4-hydroxynonenal. Biochim Biophys Acta. 1986 Jan 3;875(1):103–114. doi: 10.1016/0005-2760(86)90016-0. [DOI] [PubMed] [Google Scholar]
- Kent M. J., Light N. D., Bailey A. J. Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro. Biochem J. 1985 Feb 1;225(3):745–752. doi: 10.1042/bj2250745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lien Y. H., Stern R., Fu J. C., Siegel R. C. Inhibition of collagen fibril formation in vitro and subsequent cross-linking by glucose. Science. 1984 Sep 28;225(4669):1489–1491. doi: 10.1126/science.6147899. [DOI] [PubMed] [Google Scholar]
- Maciag T., Hoover G. A., Stemerman M. B., Weinstein R. Serial propagation of human endothelial cells in vitro. J Cell Biol. 1981 Nov;91(2 Pt 1):420–426. doi: 10.1083/jcb.91.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monnier V. M., Kohn R. R., Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):583–587. doi: 10.1073/pnas.81.2.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morel D. W., DiCorleto P. E., Chisolm G. M. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis. 1984 Jul-Aug;4(4):357–364. doi: 10.1161/01.atv.4.4.357. [DOI] [PubMed] [Google Scholar]
- Schuh J., Fairclough G. F., Jr, Haschemeyer R. H. Oxygen-mediated heterogeneity of apo-low-density lipoprotein. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3173–3177. doi: 10.1073/pnas.75.7.3173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sell D. R., Monnier V. M. Structure elucidation of a senescence cross-link from human extracellular matrix. Implication of pentoses in the aging process. J Biol Chem. 1989 Dec 25;264(36):21597–21602. [PubMed] [Google Scholar]
- Shepherd J., Bedford D. K., Morgan H. G. Radioiodination of human low density lipoprotein: a comparison of four methods. Clin Chim Acta. 1976 Jan 2;66(1):97–109. doi: 10.1016/0009-8981(76)90376-4. [DOI] [PubMed] [Google Scholar]
- Shlafer M., Shepard B. M. A method to reduce interference by sucrose in the detection of thiobarbituric acid-reactive substances. Anal Biochem. 1984 Mar;137(2):269–276. doi: 10.1016/0003-2697(84)90084-8. [DOI] [PubMed] [Google Scholar]
- Tanaka S., Avigad G., Brodsky B., Eikenberry E. F. Glycation induces expansion of the molecular packing of collagen. J Mol Biol. 1988 Sep 20;203(2):495–505. doi: 10.1016/0022-2836(88)90015-0. [DOI] [PubMed] [Google Scholar]
- Trüeb B., Holenstein C. G., Fischer R. W., Winterhalter K. H. Nonenzymatic glycosylation of proteins. A warning. J Biol Chem. 1980 Jul 25;255(14):6717–6720. [PubMed] [Google Scholar]
- Walmsley T. A., Lever M. Fluorometric measurement of furfural and 5-hydroxymethylfurfural. Anal Biochem. 1982 Aug;124(2):446–451. doi: 10.1016/0003-2697(82)90063-x. [DOI] [PubMed] [Google Scholar]
