Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 1;294(Pt 2):401–406. doi: 10.1042/bj2940401

Role of protein kinase C in the phosphorylation of cardiac myosin light chain 2.

R C Venema 1, R L Raynor 1, T A Noland Jr 1, J F Kuo 1
PMCID: PMC1134468  PMID: 8396912

Abstract

The role of protein kinase C (PKC) in the phosphorylation of myosin light chain 2 (MLC2) in adult rat heart cells has been investigated. PKC-mediated phosphorylation of MLC2 in adult rat cardiac myofibrils in vitro occurs with a stoichiometry (0.7 mol of phosphate/mol of protein) similar to that mediated by myosin light chain kinase (MLCK). Two-dimensional tryptic phosphopeptide mapping of MLC2 following phosphorylation by PKC or MLCK in vitro yields the same major phosphopeptides for each protein kinase. These sites are also 32P-labelled in situ when isolated cardiomyocytes are incubated with [32P]P(i). 32P labelling of MLC2 in cardiomyocytes is increased by 5-fold in 10 min upon incubation with the phosphatase inhibitor calyculin A, demonstrating the existence of a rapidly turning over component of MLC2 phosphorylation in these cells. 32P label is completely removed from MLC2 when myocytes are exposed to 2,3-butanedione monoxime, an inhibitor of cardiac contraction known to desensitize the myofilaments to activation by Ca2+. 32P labelling of MLC2 is also decreased by 50-100% following exposure to the PKC-selective inhibitors calphostin C and chelerythrine, suggesting that PKC, and not MLCK, is primarily responsible for incorporation of rapidly turning over phosphate into MLC2 in situ. Taken together, these data implicate PKC in the phosphorylation of MLC2 in heart cells and support the hypothesis that phosphorylation of cardiac MLC2 has a role in determining myofibrillar Ca2+ sensitivity.

Full text

PDF
404

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bengur A. R., Robinson E. A., Appella E., Sellers J. R. Sequence of the sites phosphorylated by protein kinase C in the smooth muscle myosin light chain. J Biol Chem. 1987 Jun 5;262(16):7613–7617. [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Butler T. M., Siegman M. J., Mooers S. U., Barsotti R. J. Myosin light chain phosphorylation does not modulate cross-bridge cycling rate in mouse skeletal muscle. Science. 1983 Jun 10;220(4602):1167–1169. doi: 10.1126/science.6857239. [DOI] [PubMed] [Google Scholar]
  4. Chisholm A. A., Cohen P. The myosin-bound form of protein phosphatase 1 (PP-1M) is the enzyme that dephosphorylates native myosin in skeletal and cardiac muscles. Biochim Biophys Acta. 1988 Sep 16;971(2):163–169. doi: 10.1016/0167-4889(88)90188-7. [DOI] [PubMed] [Google Scholar]
  5. Clement O., Puceat M., Walsh M. P., Vassort G. Protein kinase C enhances myosin light-chain kinase effects on force development and ATPase activity in rat single skinned cardiac cells. Biochem J. 1992 Jul 1;285(Pt 1):311–317. doi: 10.1042/bj2850311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
  7. England P. J. The significance of phosphorylation of myosin light chains in heart. J Mol Cell Cardiol. 1984 Jul;16(7):591–595. doi: 10.1016/s0022-2828(84)80623-9. [DOI] [PubMed] [Google Scholar]
  8. Gambassi G., Spurgeon H. A., Lakatta E. G., Blank P. S., Capogrossi M. C. Different effects of alpha- and beta-adrenergic stimulation on cytosolic pH and myofilament responsiveness to Ca2+ in cardiac myocytes. Circ Res. 1992 Oct;71(4):870–882. doi: 10.1161/01.res.71.4.870. [DOI] [PubMed] [Google Scholar]
  9. Gevers W. The unsolved problem of whether and when myosin light-chain phosphorylation is important in the heart. J Mol Cell Cardiol. 1984 Jul;16(7):587–590. doi: 10.1016/s0022-2828(84)80622-7. [DOI] [PubMed] [Google Scholar]
  10. Girard P. R., Mazzei G. J., Kuo J. F. Immunological quantitation of phospholipid/Ca2+-dependent protein kinase and its fragments. Tissue levels, subcellular distribution, and ontogenetic changes in brain and heart. J Biol Chem. 1986 Jan 5;261(1):370–375. [PubMed] [Google Scholar]
  11. Gwathmey J. K., Hajjar R. J., Solaro R. J. Contractile deactivation and uncoupling of crossbridges. Effects of 2,3-butanedione monoxime on mammalian myocardium. Circ Res. 1991 Nov;69(5):1280–1292. doi: 10.1161/01.res.69.5.1280. [DOI] [PubMed] [Google Scholar]
  12. Herbert J. M., Augereau J. M., Gleye J., Maffrand J. P. Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1990 Nov 15;172(3):993–999. doi: 10.1016/0006-291x(90)91544-3. [DOI] [PubMed] [Google Scholar]
  13. Herring B. P., England P. J. The turnover of phosphate bound to myosin light chain-2 in perfused rat heart. Biochem J. 1986 Nov 15;240(1):205–214. doi: 10.1042/bj2400205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. High C. W., Stull J. T. Phosphorylation of myosin in perfused rabbit and rat hearts. Am J Physiol. 1980 Dec;239(6):H756–H764. doi: 10.1152/ajpheart.1980.239.6.H756. [DOI] [PubMed] [Google Scholar]
  15. Holroyde M. J., Small D. A., Howe E., Solaro R. J. Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation. Biochim Biophys Acta. 1979 Nov 1;587(4):628–637. doi: 10.1016/0304-4165(79)90014-x. [DOI] [PubMed] [Google Scholar]
  16. Ikebe M., Hartshorne D. J., Elzinga M. Phosphorylation of the 20,000-dalton light chain of smooth muscle myosin by the calcium-activated, phospholipid-dependent protein kinase. Phosphorylation sites and effects of phosphorylation. J Biol Chem. 1987 Jul 15;262(20):9569–9573. [PubMed] [Google Scholar]
  17. Ishihara H., Martin B. L., Brautigan D. L., Karaki H., Ozaki H., Kato Y., Fusetani N., Watabe S., Hashimoto K., Uemura D. Calyculin A and okadaic acid: inhibitors of protein phosphatase activity. Biochem Biophys Res Commun. 1989 Mar 31;159(3):871–877. doi: 10.1016/0006-291x(89)92189-x. [DOI] [PubMed] [Google Scholar]
  18. Jeacocke S. A., England P. J. Phosphorylation of myosin light chains in perfused rat heart. Effect of adrenaline and increased cytoplasmic calcium ions. Biochem J. 1980 Jun 15;188(3):763–768. doi: 10.1042/bj1880763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaku T., Lakatta E., Filburn C. Alpha-adrenergic regulation of phosphoinositide metabolism and protein kinase C in isolated cardiac myocytes. Am J Physiol. 1991 Mar;260(3 Pt 1):C635–C642. doi: 10.1152/ajpcell.1991.260.3.C635. [DOI] [PubMed] [Google Scholar]
  20. Kamm K. E., Stull J. T. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol. 1989;51:299–313. doi: 10.1146/annurev.ph.51.030189.001503. [DOI] [PubMed] [Google Scholar]
  21. Kawamoto S., Bengur A. R., Sellers J. R., Adelstein R. S. In situ phosphorylation of human platelet myosin heavy and light chains by protein kinase C. J Biol Chem. 1989 Feb 5;264(4):2258–2265. [PubMed] [Google Scholar]
  22. Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  23. Li T., Sperelakis N., Teneick R. E., Solaro R. J. Effects of diacetyl monoxime on cardiac excitation-contraction coupling. J Pharmacol Exp Ther. 1985 Mar;232(3):688–695. [PubMed] [Google Scholar]
  24. Ludowyke R. I., Peleg I., Beaven M. A., Adelstein R. S. Antigen-induced secretion of histamine and the phosphorylation of myosin by protein kinase C in rat basophilic leukemia cells. J Biol Chem. 1989 Jul 25;264(21):12492–12501. [PubMed] [Google Scholar]
  25. Morano I., Bächle-Stolz C., Katus A., Rüegg J. C. Increased calcium sensitivity of chemically skinned human atria by myosin light chain kinase. Basic Res Cardiol. 1988 Jul-Aug;83(4):350–359. doi: 10.1007/BF02005820. [DOI] [PubMed] [Google Scholar]
  26. Morano I., Hofmann F., Zimmer M., Rüegg J. C. The influence of P-light chain phosphorylation by myosin light chain kinase on the calcium sensitivity of chemically skinned heart fibres. FEBS Lett. 1985 Sep 23;189(2):221–224. doi: 10.1016/0014-5793(85)81027-9. [DOI] [PubMed] [Google Scholar]
  27. Mumby M. C., Russell K. L., Garrard L. J., Green D. D. Cardiac contractile protein phosphatases. Purification of two enzyme forms and their characterization with subunit-specific antibodies. J Biol Chem. 1987 May 5;262(13):6257–6265. [PubMed] [Google Scholar]
  28. Murphy A. M., Solaro R. J. Developmental difference in the stimulation of cardiac myofibrillar Mg2(+)-ATPase activity by calmidazolium. Pediatr Res. 1990 Jul;28(1):46–49. doi: 10.1203/00006450-199007000-00011. [DOI] [PubMed] [Google Scholar]
  29. Nakanishi S., Yamada K., Iwahashi K., Kuroda K., Kase H. KT5926, a potent and selective inhibitor of myosin light chain kinase. Mol Pharmacol. 1990 Apr;37(4):482–488. [PubMed] [Google Scholar]
  30. Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
  31. Noland T. A., Jr, Kuo J. F. Protein kinase C phosphorylation of cardiac troponin I and troponin T inhibits Ca(2+)-stimulated MgATPase activity in reconstituted actomyosin and isolated myofibrils, and decreases actin-myosin interactions. J Mol Cell Cardiol. 1993 Jan;25(1):53–65. doi: 10.1006/jmcc.1993.1007. [DOI] [PubMed] [Google Scholar]
  32. Noland T. A., Jr, Kuo J. F. Protein kinase C phosphorylation of cardiac troponin I or troponin T inhibits Ca2(+)-stimulated actomyosin MgATPase activity. J Biol Chem. 1991 Mar 15;266(8):4974–4978. [PubMed] [Google Scholar]
  33. Noland T. A., Jr, Raynor R. L., Kuo J. F. Identification of sites phosphorylated in bovine cardiac troponin I and troponin T by protein kinase C and comparative substrate activity of synthetic peptides containing the phosphorylation sites. J Biol Chem. 1989 Dec 5;264(34):20778–20785. [PubMed] [Google Scholar]
  34. Pucéat M., Terzic A., Clément O., Scamps F., Vogel S. M., Vassort G. Cardiac alpha 1-adrenoceptors mediate positive inotropy via myofibrillar sensitization. Trends Pharmacol Sci. 1992 Jul;13(7):263–265. doi: 10.1016/0165-6147(92)90080-p. [DOI] [PubMed] [Google Scholar]
  35. Resink T. J., Gevers W., Noakes T. D., Opie L. H. Increased cardiac myosin ATPase activity as a biochemical adaptation to running training: enhanced response to catecholamines and a role for myosin phosphorylation. J Mol Cell Cardiol. 1981 Jul;13(7):679–694. doi: 10.1016/0022-2828(81)90275-3. [DOI] [PubMed] [Google Scholar]
  36. Rogers J. C., Williams D. L., Jr Kaempferol inhibits myosin light chain kinase. Biochem Biophys Res Commun. 1989 Oct 16;164(1):419–425. doi: 10.1016/0006-291x(89)91736-1. [DOI] [PubMed] [Google Scholar]
  37. Sellers J. R. Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin. J Biol Chem. 1985 Dec 15;260(29):15815–15819. [PubMed] [Google Scholar]
  38. Sweeney H. L., Stull J. T. Phosphorylation of myosin in permeabilized mammalian cardiac and skeletal muscle cells. Am J Physiol. 1986 Apr;250(4 Pt 1):C657–C660. doi: 10.1152/ajpcell.1986.250.4.C657. [DOI] [PubMed] [Google Scholar]
  39. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  40. Terzic A., Pucéat M., Clément O., Scamps F., Vassort G. Alpha 1-adrenergic effects on intracellular pH and calcium and on myofilaments in single rat cardiac cells. J Physiol. 1992 Feb;447:275–292. doi: 10.1113/jphysiol.1992.sp019002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Trybus K. M. Filamentous smooth muscle myosin is regulated by phosphorylation. J Cell Biol. 1989 Dec;109(6 Pt 1):2887–2894. doi: 10.1083/jcb.109.6.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Venema R. C., Kuo J. F. Protein kinase C-mediated phosphorylation of troponin I and C-protein in isolated myocardial cells is associated with inhibition of myofibrillar actomyosin MgATPase. J Biol Chem. 1993 Feb 5;268(4):2705–2711. [PubMed] [Google Scholar]
  43. West J. M., Stephenson D. G. Contractile activation and the effects of 2,3-butanedione monoxime (BDM) in skinned cardiac preparations from normal and dystrophic mice (129/ReJ). Pflugers Arch. 1989 Mar;413(5):546–552. doi: 10.1007/BF00594187. [DOI] [PubMed] [Google Scholar]
  44. Wiggins J. R., Reiser J., Fitzpatrick D. F., Bergey J. L. Inotropic actions of diacetyl monoxime in cat ventricular muscle. J Pharmacol Exp Ther. 1980 Feb;212(2):217–224. [PubMed] [Google Scholar]
  45. el-Saleh S. C., Solaro R. J. Calmidazolium, a calmodulin antagonist, stimulates calcium-troponin C and calcium-calmodulin-dependent activation of striated muscle myofilaments. J Biol Chem. 1987 Dec 15;262(35):17240–17246. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES