Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Sep 15;294(Pt 3):693–697. doi: 10.1042/bj2940693

Enhancement of pertussis-toxin-sensitive Na(+)-dependent uridine transporter activity in HL-60 granulocytes by N-formylmethionyl-leucyl-phenylalanine.

L B Goh 1, J A Sokoloski 1, A C Sartorelli 1, C W Lee 1
PMCID: PMC1134518  PMID: 8379925

Abstract

N-Formyl-Met-Leu-Phe (FMLP), at concentrations as low as 5 nM, caused an increase in intracellular uridine pools in dimethyl sulphoxide (Me2SO)-differentiated HL-60 cells. Intracellular uridine pools were elevated rapidly and reached a maximum within 10 min of exposure to 10 microM FMLP, followed by a gradual decline. This enhancement by FMLP was a consequence of a 3-fold increase in the Vmax of pertussis-toxin-sensitive Na(+)-dependent uridine transport system, with no change in the apparent Km. Km values of 2.67 +/- 0.45 and 3.85 +/- 0.52 microM and Vmax. values of 0.046 +/- 0.017 and 0.125 +/- 0.020 microM/s were obtained for untreated and FMLP-treated Me2SO-differentiated cells respectively. The effect of FMLP on the Na(+)-dependent transport of uridine in Me2SO-differentiated HL-60 cells was specific, as the facilitated transport of uridine was unaffected. Furthermore, this phenomenon was not observed in undifferentiated, phorbol 12-myristate 13-acetate (PMA)-differentiated or pertussis-toxin-treated Me2SO-differentiated HL-60 cells. Removal of extracellular Ca2+ with EGTA abolished the FMLP enhancement of uridine transport in a reversible manner, suggesting the involvement of Ca2+. However, the Ca2+ ionophore A23187 only partially mimicked the effect of FMLP. Similarly, with PMA the transport was sub-optimally enhanced, but a full activation was observed in cells treated with both A23187 and PMA. These findings suggest that activation of the Na(+)-dependent uridine transporter by FMLP in Me2SO-differentiated HL-60 cells involves a pertussis-toxin-sensitive G-protein with a bifurcating signal-transduction pathway.

Full text

PDF
696

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandt S. J., Dougherty R. W., Lapetina E. G., Niedel J. E. Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells. Proc Natl Acad Sci U S A. 1985 May;82(10):3277–3280. doi: 10.1073/pnas.82.10.3277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cowen D. S., Baker B., Dubyak G. R. Pertussis toxin produces differential inhibitory effects on basal, P2-purinergic, and chemotactic peptide-stimulated inositol phospholipid breakdown in HL-60 cells and HL-60 cell membranes. J Biol Chem. 1990 Sep 25;265(27):16181–16189. [PubMed] [Google Scholar]
  3. Darnowski J. W., Handschumacher R. E. Tissue uridine pools: evidence in vivo of a concentrative mechanism for uridine uptake. Cancer Res. 1986 Jul;46(7):3490–3494. [PubMed] [Google Scholar]
  4. Di Virgilio F., Vicentini L. M., Treves S., Riz G., Pozzan T. Inositol phosphate formation in fMet-Leu-Phe-stimulated human neutrophils does not require an increase in the cytosolic free Ca2+ concentration. Biochem J. 1985 Jul 15;229(2):361–367. doi: 10.1042/bj2290361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dougherty R. W., Godfrey P. P., Hoyle P. C., Putney J. W., Jr, Freer R. J. Secretagogue-induced phosphoinositide metabolism in human leucocytes. Biochem J. 1984 Sep 1;222(2):307–314. doi: 10.1042/bj2220307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoffstein S. T., Friedman R. S., Weissmann G. Degranulation, membrane addition, and shape change during chemotactic factor-induced aggregation of human neutrophils. J Cell Biol. 1982 Oct;95(1):234–241. doi: 10.1083/jcb.95.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Krause K. H., Schlegel W., Wollheim C. B., Andersson T., Waldvogel F. A., Lew P. D. Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation. J Clin Invest. 1985 Oct;76(4):1348–1354. doi: 10.1172/JCI112109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lacal P., Pulido R., Sánchez-Madrid F., Mollinedo F. Intracellular location of T200 and Mo1 glycoproteins in human neutrophils. J Biol Chem. 1988 Jul 15;263(20):9946–9951. [PubMed] [Google Scholar]
  9. Lee C. W., Sokoloski J. A., Sartorelli A. C., Handschumacher R. E. Induction of the differentiation of HL-60 cells by phorbol 12-myristate 13-acetate activates a Na(+)-dependent uridine-transport system. Involvement of protein kinase C. Biochem J. 1991 Feb 15;274(Pt 1):85–90. doi: 10.1042/bj2740085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marasco W. A., Phan S. H., Krutzsch H., Showell H. J., Feltner D. E., Nairn R., Becker E. L., Ward P. A. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem. 1984 May 10;259(9):5430–5439. [PubMed] [Google Scholar]
  11. Niedel J., Kahane I., Lachman L., Cuatrecasas P. A subpopulation of cultured human promyelocytic leukemia cells (HL-60) displays the formyl peptide chemotactic receptor. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1000–1004. doi: 10.1073/pnas.77.2.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Perez H. D., Elfman F., Marder S., Lobo E., Ives H. E. Formyl peptide-induced chemotaxis of human polymorphonuclear leukocytes does not require either marked changes in cytosolic calcium or specific granule discharge. Role of formyl peptide receptor reexpression (or recycling). J Clin Invest. 1989 Jun;83(6):1963–1970. doi: 10.1172/JCI114105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pozzan T., Lew D. P., Wollheim C. B., Tsien R. Y. Is cytosolic ionized calcium regulating neutrophil activation? Science. 1983 Sep 30;221(4618):1413–1415. doi: 10.1126/science.6310757. [DOI] [PubMed] [Google Scholar]
  14. Rossi F. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim Biophys Acta. 1986 Nov 4;853(1):65–89. doi: 10.1016/0304-4173(86)90005-4. [DOI] [PubMed] [Google Scholar]
  15. Schiffmann E., Corcoran B. A., Wahl S. M. N-formylmethionyl peptides as chemoattractants for leucocytes. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1059–1062. doi: 10.1073/pnas.72.3.1059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Showell H. J., Freer R. J., Zigmond S. H., Schiffmann E., Aswanikumar S., Corcoran B., Becker E. L. The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal secretion for neutrophils. J Exp Med. 1976 May 1;143(5):1154–1169. doi: 10.1084/jem.143.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Snyderman R., Pike M. C. Chemoattractant receptors on phagocytic cells. Annu Rev Immunol. 1984;2:257–281. doi: 10.1146/annurev.iy.02.040184.001353. [DOI] [PubMed] [Google Scholar]
  18. Snyderman R., Smith C. D., Verghese M. W. Model for leukocyte regulation by chemoattractant receptors: roles of a guanine nucleotide regulatory protein and polyphosphoinositide metabolism. J Leukoc Biol. 1986 Dec;40(6):785–800. doi: 10.1002/jlb.40.6.785. [DOI] [PubMed] [Google Scholar]
  19. Sokoloski J. A., Blair O. C., Sartorelli A. C. Alterations in glycoprotein synthesis and guanosine triphosphate levels associated with the differentiation of HL-60 leukemia cells produced by inhibitors of inosine 5'-phosphate dehydrogenase. Cancer Res. 1986 May;46(5):2314–2319. [PubMed] [Google Scholar]
  20. Sokoloski J. A., Sartorelli A. C., Handschumacher R. E., Lee C. W. Inhibition by pertussis toxin of the activation of Na(+)-dependent uridine transport in dimethyl-sulphoxide-induced HL-60 leukaemia cells. Biochem J. 1991 Dec 1;280(Pt 2):515–519. doi: 10.1042/bj2800515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams L. T., Snyderman R., Pike M. C., Lefkowitz R. J. Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1204–1208. doi: 10.1073/pnas.74.3.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES