Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Oct 15;295(Pt 2):399–404. doi: 10.1042/bj2950399

Exposure of beta H-crystallin to hydroxyl radicals enhances the transglutaminase-susceptibility of its existing amine-donor and amine-acceptor sites.

P J Groenen 1, M Seccia 1, R H Smulders 1, E Gravela 1, K H Cheeseman 1, H Bloemendal 1, W W de Jong 1
PMCID: PMC1134895  PMID: 7902086

Abstract

beta H-crystallin was exposed to radiolytically generated hydroxyl radicals at defined radical concentrations, and its capacity to act as an amine-acceptor substrate and as an amine-donor substrate for transglutaminase were investigated. [14C]Methylamine was used as a probe for labelling amine-acceptor sites; a novel biotinylated hexapeptide was used to label amine-donor sites. The results demonstrate that both primary amine incorporation and hexapeptide incorporation by transglutaminase are considerably increased after oxidative attack on the crystallin. The identity of the labelled subunits was established, and it is shown that, in both cases, this increased incorporation is not due to the production of new substrates, but that the existing incorporation sites become more susceptible. Moreover, using the newly developed probe, we could identify, for the first time, the major crystallin subunits active as amine-donor substrates (both before and after treatment) to be beta B1-, beta A3- and beta A4-crystallin. These data support the proposal that oxidative stress and transglutaminase activity may be jointly involved in the changes found in lens crystallins with age and in the development of cataract.

Full text

PDF
399

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andley U. P., Clark B. A. Conformational changes of beta H-crystallin in riboflavin-sensitized photooxidation. Exp Eye Res. 1988 Jul;47(1):1–15. doi: 10.1016/0014-4835(88)90019-x. [DOI] [PubMed] [Google Scholar]
  2. Bax B., Lapatto R., Nalini V., Driessen H., Lindley P. F., Mahadevan D., Blundell T. L., Slingsby C. X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins. Nature. 1990 Oct 25;347(6295):776–780. doi: 10.1038/347776a0. [DOI] [PubMed] [Google Scholar]
  3. Berbers G. A., Feenstra R. W., van den Bos R., Hoekman W. A., Bloemendal H., de Jong W. W. Lens transglutaminase selects specific beta-crystallin sequences as substrate. Proc Natl Acad Sci U S A. 1984 Nov;81(22):7017–7020. doi: 10.1073/pnas.81.22.7017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berbers G. A., Hoekman W. A., Bloemendal H., de Jong W. W., Kleinschmidt T., Braunitzer G. Homology between the primary structures of the major bovine beta-crystallin chains. Eur J Biochem. 1984 Mar 15;139(3):467–479. doi: 10.1111/j.1432-1033.1984.tb08029.x. [DOI] [PubMed] [Google Scholar]
  5. Berbers G. A., Hoekman W. A., Bloemendal H., de Jong W. W., Kleinschmidt T., Braunitzer G. Proline- and alanine-rich N-terminal extension of the basic bovine beta-crystallin B1 chains. FEBS Lett. 1983 Sep 19;161(2):225–229. doi: 10.1016/0014-5793(83)81013-8. [DOI] [PubMed] [Google Scholar]
  6. Brossa O., Seccia M., Gravela E. Increased susceptibility to transglutaminase of eye lens proteins exposed to activated oxygen species produced in the glucose-glucose oxidase reaction. Free Radic Res Commun. 1990;11(4-5):223–229. doi: 10.3109/10715769009088919. [DOI] [PubMed] [Google Scholar]
  7. Carmichael P. L., Hipkiss A. R. Age-related changes in proteolysis of aberrant crystallin in bovine lens cell-free preparations. Mech Ageing Dev. 1989 Oct;50(1):37–48. doi: 10.1016/0047-6374(89)90057-2. [DOI] [PubMed] [Google Scholar]
  8. Davies K. J., Delsignore M. E., Lin S. W. Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem. 1987 Jul 15;262(20):9902–9907. [PubMed] [Google Scholar]
  9. Davies K. J. Protein damage and degradation by oxygen radicals. I. general aspects. J Biol Chem. 1987 Jul 15;262(20):9895–9901. [PubMed] [Google Scholar]
  10. Garland D., Zigler J. S., Jr, Kinoshita J. Structural changes in bovine lens crystallins induced by ascorbate, metal, and oxygen. Arch Biochem Biophys. 1986 Dec;251(2):771–776. doi: 10.1016/0003-9861(86)90389-9. [DOI] [PubMed] [Google Scholar]
  11. Groenen P. J., Bloemendal H., de Jong W. W. The carboxy-terminal lysine of alpha B-crystallin is an amine-donor substrate for tissue transglutaminase. Eur J Biochem. 1992 Apr 15;205(2):671–674. doi: 10.1111/j.1432-1033.1992.tb16827.x. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Li D. Y., Borkman R. F., Wang R. H., Dillon J. Mechanisms of photochemically produced turbidity in lens protein solutions. Exp Eye Res. 1990 Dec;51(6):663–669. doi: 10.1016/0014-4835(90)90050-5. [DOI] [PubMed] [Google Scholar]
  14. Lorand L., Hsu L. K., Siefring G. E., Jr, Rafferty N. S. Lens transglutaminase and cataract formation. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1356–1360. doi: 10.1073/pnas.78.3.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lorand L., Velasco P. T., Murthy S. N., Wilson J., Parameswaran K. N. Isolation of transglutaminase-reactive sequences from complex biological systems: a prominent lysine donor sequence in bovine lens. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11161–11163. doi: 10.1073/pnas.89.23.11161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McDermott M. J., Chiesa R., Spector A. Fe2+ oxidation of alpha-crystallin produces a 43,000 Da aggregate composed of A and B chains cross-linked by non-reducible covalent bonds. Biochem Biophys Res Commun. 1988 Dec 15;157(2):626–631. doi: 10.1016/s0006-291x(88)80296-1. [DOI] [PubMed] [Google Scholar]
  17. McDermott M., Chiesa R., Roberts J. E., Dillon J. Photooxidation of specific residues in alpha-crystallin polypeptides. Biochemistry. 1991 Sep 3;30(35):8653–8660. doi: 10.1021/bi00099a023. [DOI] [PubMed] [Google Scholar]
  18. Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
  19. Molhuizen H. O., Alkemade H. A., Zeeuwen P. L., de Jongh G. J., Wieringa B., Schalkwijk J. SKALP/elafin: an elastase inhibitor from cultured human keratinocytes. Purification, cDNA sequence, and evidence for transglutaminase cross-linking. J Biol Chem. 1993 Jun 5;268(16):12028–12032. [PubMed] [Google Scholar]
  20. Mulders J. W., Hoekman W. A., Bloemendal H., de Jong W. W. Beta B1 crystallin is an amine-donor substrate for tissue transglutaminase. Exp Cell Res. 1987 Aug;171(2):296–305. doi: 10.1016/0014-4827(87)90163-7. [DOI] [PubMed] [Google Scholar]
  21. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  22. Parameswaran K. N., Velasco P. T., Wilson J., Lorand L. Labeling of epsilon-lysine crosslinking sites in proteins with peptide substrates of factor XIIIa and transglutaminase. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8472–8475. doi: 10.1073/pnas.87.21.8472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Seccia M., Brossa O., Gravela E., Slater T. F., Cheeseman K. H. Exposure of beta L-crystallin to oxidizing free radicals enhances its susceptibility to transglutaminase activity. Biochem J. 1991 Mar 15;274(Pt 3):869–873. doi: 10.1042/bj2740869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wistow G., Slingsby C., Blundell T., Driessen H., De Jong W., Bloemendal H. Eye-lens proteins: the three-dimensional structure of beta-crystallin predicted from monomeric gamma-crystallin. FEBS Lett. 1981 Oct 12;133(1):9–16. doi: 10.1016/0014-5793(81)80460-7. [DOI] [PubMed] [Google Scholar]
  25. Zigler J. S., Jr, Huang Q. L., Du X. Y. Oxidative modification of lens crystallins by H2O2 and chelated iron. Free Radic Biol Med. 1989;7(5):499–505. doi: 10.1016/0891-5849(89)90025-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES