Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Oct 15;255(2):501–505.

Differences in glycosylation pattern of human secretory ribonucleases.

J J Beintema 1, A Blank 1, G L Schieven 1, C A Dekker 1, S Sorrentino 1, M Libonati 1
PMCID: PMC1135256  PMID: 3202829

Abstract

The major secretory ribonuclease (RNase) of human urine (RNase HUA) was isolated and sequenced by automatic Edman degradation and analysis of peptides and glycopeptides. The isolated enzyme was shown to be free of other urine RNase activities by SDS/polyacrylamide-gel electrophoresis and activity staining. It is a glycoprotein 128 amino acids long, differing from human pancreatic RNase in the presence of an additional threonine residue at the C-terminus. It differs from the pancreatic enzyme in its glycosylation pattern as well, and contains about 45 sugar residues. Each of the three Asn-Xaa-Ser/Thr sequences (Asn-34, Asn-76, Asn-88) is glycosylated with a complex-type oligosaccharide chain. Glycosylation at Asn-88 has not been observed previously in mammalian secretory RNases. Preliminary sequence data on the major RNase of human seminal plasma have revealed no difference between it and the major urinary enzyme; their similarities include the presence of threonine at the C-terminus. The glycosylation pattern of human seminal RNase is very similar to that of the pancreatic enzyme. The structural differences between the secretory RNases from human pancreas, urine and seminal plasma must originate from organ-specific post-translational modifications of the one primary gene product. Detailed characterization of peptides and the results of gel filtration of tryptic and tryptic/chymotryptic digests of performic acid-oxidized RNase have been deposited as Supplementary Publication SUP 50146 (4 pages) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1988) 249, 5.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Liao T. H. The immunological and structural comparisons of deoxyribonucleases I. Glycosylation differences between bovine pancreatic and parotid deoxyribonucleases. J Biol Chem. 1983 Sep 10;258(17):10283–10288. [PubMed] [Google Scholar]
  2. Beintema J. J., Fitch W. M., Carsana A. Molecular evolution of pancreatic-type ribonucleases. Mol Biol Evol. 1986 May;3(3):262–275. doi: 10.1093/oxfordjournals.molbev.a040393. [DOI] [PubMed] [Google Scholar]
  3. Beintema J. J., Gaastra W., Scheffer A. J., Welling G. W. Carbohydrate in pancreatic ribonucleases. Eur J Biochem. 1976 Apr 1;63(2):441–448. doi: 10.1111/j.1432-1033.1976.tb10246.x. [DOI] [PubMed] [Google Scholar]
  4. Beintema J. J., Hofsteenge J., Iwama M., Morita T., Ohgi K., Irie M., Sugiyama R. H., Schieven G. L., Dekker C. A., Glitz D. G. Amino acid sequence of the nonsecretory ribonuclease of human urine. Biochemistry. 1988 Jun 14;27(12):4530–4538. doi: 10.1021/bi00412a046. [DOI] [PubMed] [Google Scholar]
  5. Beintema J. J. Mammalian ribonucleases. The absence of a glycosylated Asn-Pro-Thr sequence in horse ribonuclease and the presence of tryptophan at position 39 in horse and dromedary ribonuclease. FEBS Lett. 1985 Jun 3;185(1):115–120. doi: 10.1016/0014-5793(85)80752-3. [DOI] [PubMed] [Google Scholar]
  6. Beintema J. J., Scheffer A. J., van Dijk H., Welling G. W., Zwiers H. Pancreatic ribonuclease distribution and comparisons in mammals. Nat New Biol. 1973 Jan 17;241(107):76–78. doi: 10.1038/newbio241076a0. [DOI] [PubMed] [Google Scholar]
  7. Beintema J. J., Wietzes P., Weickmann J. L., Glitz D. G. The amino acid sequence of human pancreatic ribonuclease. Anal Biochem. 1984 Jan;136(1):48–64. doi: 10.1016/0003-2697(84)90306-3. [DOI] [PubMed] [Google Scholar]
  8. Blank A., Dekker C. A. Ribonucleases of human serum, urine, cerebrospinal fluid, and leukocytes. Activity staining following electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. Biochemistry. 1981 Apr 14;20(8):2261–2267. doi: 10.1021/bi00511a030. [DOI] [PubMed] [Google Scholar]
  9. Carsana A., Confalone E., Palmieri M., Libonati M., Furia A. Structure of the bovine pancreatic ribonuclease gene: the unique intervening sequence in the 5' untranslated region contains a promoter-like element. Nucleic Acids Res. 1988 Jun 24;16(12):5491–5502. doi: 10.1093/nar/16.12.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corbishley T. P., Greenway B., Johnson P. J., Williams R. Serum ribonuclease in the diagnosis of pancreatic carcinoma and in monitoring chemotherapy. Clin Chim Acta. 1982 Sep 15;124(2):225–233. doi: 10.1016/0009-8981(82)90390-4. [DOI] [PubMed] [Google Scholar]
  11. Cranston J. W., Perini F., Crisp E. R., Hixson C. V. Purification and properties of ribonucleases from human urine. Biochim Biophys Acta. 1980 Dec 4;616(2):239–258. doi: 10.1016/0005-2744(80)90142-4. [DOI] [PubMed] [Google Scholar]
  12. Elson M., Glitz D. G. Characterization of a ribonuclease from bovine brain. Biochemistry. 1975 Apr 8;14(7):1471–1476. doi: 10.1021/bi00678a019. [DOI] [PubMed] [Google Scholar]
  13. Gaastra W., Welling G. W., Beintema J. J. The amino-acid sequence of kangaroo pancreatic ribonuclease. Eur J Biochem. 1978 May;86(1):209–217. doi: 10.1111/j.1432-1033.1978.tb12301.x. [DOI] [PubMed] [Google Scholar]
  14. Hanover J. A., Lennarz W. J. Transmembrane assembly of membrane and secretory glycoproteins. Arch Biochem Biophys. 1981 Oct 1;211(1):1–19. doi: 10.1016/0003-9861(81)90423-9. [DOI] [PubMed] [Google Scholar]
  15. Hitoi A., Yamashita K., Niwata Y., Irie M., Kochibe N., Kobata A. The carbohydrate moieties of human urinary ribonuclease UL. J Biochem. 1987 Jan;101(1):29–41. doi: 10.1093/oxfordjournals.jbchem.a121905. [DOI] [PubMed] [Google Scholar]
  16. Iwama M., Kunihiro M., Ohgi K., Irie M. Purification and properties of human urine ribonucleases. J Biochem. 1981 Apr;89(4):1005–1016. [PubMed] [Google Scholar]
  17. Kamerling J. P., Gerwig G. J., Vliegenthart J. F., Clamp J. R. Characterization by gas-liquid chromatography-mass spectrometry and proton-magnetic-resonance spectroscopy of pertrimethylsilyl methyl glycosides obtained in the methanolysis of glycoproteins and glycopeptides. Biochem J. 1975 Dec;151(3):491–495. doi: 10.1042/bj1510491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krusius T., Finne J., Rauvala H. The poly(glycosyl) chains of glycoproteins. Characterisation of a novel type of glycoprotein saccharides from human erythrocyte membrane. Eur J Biochem. 1978 Dec 1;92(1):289–300. doi: 10.1111/j.1432-1033.1978.tb12747.x. [DOI] [PubMed] [Google Scholar]
  19. MacDonald R. J., Stary S. J., Swift G. H. Rat pancreatic ribonuclease messenger RNA. The nucleotide sequence of the entire mRNA and the derived amino acid sequence of the pre-enzyme. J Biol Chem. 1982 Dec 25;257(24):14582–14585. [PubMed] [Google Scholar]
  20. Morita T., Niwata Y., Ohgi K., Ogawa M., Irie M. Distribution of two urinary ribonuclease-like enzymes in human organs and body fluids. J Biochem. 1986 Jan;99(1):17–25. doi: 10.1093/oxfordjournals.jbchem.a135456. [DOI] [PubMed] [Google Scholar]
  21. Nakane H., Yoshida M., Murakami T. Assessment of the clinical usefulness of serum ribonuclease assays: an indicator for the detection of pancreatic cancer. Gastroenterol Jpn. 1979;14(1):55–62. doi: 10.1007/BF02774605. [DOI] [PubMed] [Google Scholar]
  22. Okazaki H., Ittel M. E., Niedergang C., Mandel P. Purification of an alkaline ribonuclease from soluble fraction of beef brain. Biochim Biophys Acta. 1975 May 23;391(1):84–95. doi: 10.1016/0005-2744(75)90155-2. [DOI] [PubMed] [Google Scholar]
  23. Palmieri M., Carsana A., Furia A., Libonati M. Sequence analysis of a cloned cDNA coding for bovine seminal ribonuclease. Eur J Biochem. 1985 Oct 15;152(2):275–277. doi: 10.1111/j.1432-1033.1985.tb09194.x. [DOI] [PubMed] [Google Scholar]
  24. Peterson L. M. Serum RNase in the diagnosis of pancreatic carcinoma. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2630–2634. doi: 10.1073/pnas.76.6.2630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rabin E. Z., Tattrie B. The isolation, purification, and properties of a ribonuclease (Mr 18 000) from human uremic serum, and its relation to the human urinary ribonuclease (Mr 33 000). II. Properties of the enzymes. Biochim Biophys Acta. 1982 Feb 4;701(1):132–137. doi: 10.1016/0167-4838(82)90321-1. [DOI] [PubMed] [Google Scholar]
  26. Reddi K. K., Holland J. F. Elevated serum ribonuclease in patients with pancreatic cancer. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2308–2310. doi: 10.1073/pnas.73.7.2308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sierakowska H., Shugar D. Mammalian nucleolytic enzymes. Prog Nucleic Acid Res Mol Biol. 1977;20:59–130. doi: 10.1016/s0079-6603(08)60470-5. [DOI] [PubMed] [Google Scholar]
  28. Strecker G., Montreuil J. Glycoprotéines et glycoprotéinoses. Biochimie. 1979;61(11-12):1199–1246. [PubMed] [Google Scholar]
  29. Sugiyama R. H., Blank A., Dekker C. A. Multiple ribonucleases of human urine. Biochemistry. 1981 Apr 14;20(8):2268–2274. doi: 10.1021/bi00511a031. [DOI] [PubMed] [Google Scholar]
  30. Suzuki H., Parente A., Farina B., Greco L., La Montagna R., Leone E. Complete amino-acid sequence of bovine seminal ribonuclease, a dimeric protein from seminal plasma. Biol Chem Hoppe Seyler. 1987 Oct;368(10):1305–1312. doi: 10.1515/bchm3.1987.368.2.1305. [DOI] [PubMed] [Google Scholar]
  31. Vereijken J. M., Hofsteenge J., Bak H. J., Beintema J. J. The amino-acid sequence of the three smallest CNBr peptides from p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens. Eur J Biochem. 1980 Dec;113(1):151–157. doi: 10.1111/j.1432-1033.1980.tb06149.x. [DOI] [PubMed] [Google Scholar]
  32. Weickmann J. L., Elson M., Glitz D. G. Purification and characterization of human pancreatic ribonuclease. Biochemistry. 1981 Mar 3;20(5):1272–1278. doi: 10.1021/bi00508a035. [DOI] [PubMed] [Google Scholar]
  33. Weickmann J. L., Glitz D. G. Human ribonucleases. Quantitation of pancreatic-like enzymes in serum, urine, and organ preparations. J Biol Chem. 1982 Aug 10;257(15):8705–8710. [PubMed] [Google Scholar]
  34. Yamanaka M., Akagi K., Murai K., Hirao N., Fujimi S., Omae T. Purification and properties of urinary alkaline ribonucleases from patients with nephrotic syndrome. Clin Chim Acta. 1977 Jul 15;78(2):191–201. doi: 10.1016/0009-8981(77)90306-0. [DOI] [PubMed] [Google Scholar]
  35. Yamashita K., Hitoi A., Irie M., Kobata A. Fractionation by lectin affinity chromatography indicates that the glycosylation of most ribonucleases in human viscera and body fluids is organ specific. Arch Biochem Biophys. 1986 Oct;250(1):263–266. doi: 10.1016/0003-9861(86)90725-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES