Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Nov 1;255(3):1045–1048. doi: 10.1042/bj2551045

Guanine for DNA synthesis. A compulsory route through ribonucleotide reductase.

D S Duan 1, W Sadee 1
PMCID: PMC1135346  PMID: 3063254

Abstract

Two alternative pathways for the synthesis of dGTP and its incorporation into DNA were studied: guanine (Gua)----GMP----GDP----dGDP----dGTP----DNA and dG----dGMP----dGDP----dGTP----DNA. To determine the contribution of each pathway to DNA synthesis independently of each other, [14C]Gua and [3H]dG tracer experiments were performed in a double-mutant S-49 mouse T-lymphoma cell line, dGuo-L, with purine nucleoside phosphorylase (EC 2.4.2.1)-deficiency and dGTP-feedback-resistant ribonucleotide reductase (RR, EC 1.17.4.1). In this cell line, dGTP pools can be selectively elevated by exogenous dG without affect RR and DNA synthesis. Although [3H]dG, but not [14C]Gua (up to 200 microM), readily expanded the cellular dGTP pool in a dose-dependent fashion in asynchronous cells, only a small fraction of the Gua flux into DNA was derived from [3H]dG, with the major fraction coming from [14C]Gua. H.p.l.c. analysis of G1- and partially enriched S-phase cells revealed that [3H]dGTP only accumulates in G1- but not in S-phase cells because of a rapid turnover of the dGTP pool during DNA synthesis. These results fail to provide evidence for cellular dGTP compartmentation and suggest that the pathway dG----dGMP----dGDP----dGTP alone has insufficient capacity to maintain DNA synthesis.

Full text

PDF
1047

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert D. A., Gudas L. J. Ribonucleotide reductase activity and deoxyribonucleoside triphosphate metabolism during the cell cycle of S49 wild-type and mutant mouse T-lymphoma cells. J Biol Chem. 1985 Jan 10;260(1):679–684. [PubMed] [Google Scholar]
  2. Cohen M. B., Maybaum J., Sadee W. Guanine nucleotide depletion and toxicity in mouse T lymphoma (S-49) cells. J Biol Chem. 1981 Aug 25;256(16):8713–8717. [PubMed] [Google Scholar]
  3. Crissman H. A., Tobey R. A. Cell-cycle analysis in 20 minutes. Science. 1974 Jun 21;184(4143):1297–1298. doi: 10.1126/science.184.4143.1297. [DOI] [PubMed] [Google Scholar]
  4. Duan D. S., Sadée W. Distinct effects of adenine and guanine starvation on DNA synthesis associated with different pool sizes of nucleotide precursors. Cancer Res. 1987 Aug 1;47(15):4047–4051. [PubMed] [Google Scholar]
  5. Eriksson S., Groppi V., Ullman B., Martin D. W., Jr Cell-cycle dependent variation in the levels of deoxyribonucleoside triphosphate in mouse T-lymphoma cells. Adv Exp Med Biol. 1984;165(Pt B):407–410. doi: 10.1007/978-1-4757-0390-0_77. [DOI] [PubMed] [Google Scholar]
  6. Krenitsky T. A., Tuttle J. V., Koszalka G. W., Chen I. S., Beacham L. M., 3rd, Rideout J. L., Elion G. B. Deoxycytidine kinase from calf thymus. Substrate and inhibitor specificity. J Biol Chem. 1976 Jul 10;251(13):4055–4061. [PubMed] [Google Scholar]
  7. Leeds J. M., Mathews C. K. Cell cycle-dependent effects on deoxyribonucleotide and DNA labeling by nucleoside precursors in mammalian cells. Mol Cell Biol. 1987 Jan;7(1):532–534. doi: 10.1128/mcb.7.1.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martin D. W., Jr, Gelfand E. W. Biochemistry of diseases of immunodevelopment. Annu Rev Biochem. 1981;50:845–877. doi: 10.1146/annurev.bi.50.070181.004213. [DOI] [PubMed] [Google Scholar]
  9. Mathews C. K., Slabaugh M. B. Eukaryotic DNA metabolism. Are deoxyribonucleotides channeled to replication sites? Exp Cell Res. 1986 Feb;162(2):285–295. doi: 10.1016/0014-4827(86)90335-6. [DOI] [PubMed] [Google Scholar]
  10. Maybaum J., Cohen M. B., Sadee W. In vivo rates of pyrimidine nucleotide metabolism in intact mouse T-lymphoma (s-49) cells treated with 5-fluorouracil. J Biol Chem. 1981 Mar 10;256(5):2126–2130. [PubMed] [Google Scholar]
  11. Nguyen B. T., Cohen M. B., Sadée W. Guanine ribonucleotide depletion in mammalian cells. A target of purine antimetabolites. Cancer Chemother Pharmacol. 1983;11(2):117–119. doi: 10.1007/BF00254259. [DOI] [PubMed] [Google Scholar]
  12. Nguyen B. T., Sadée W. Compartmentation of guanine nucleotide precursors for DNA synthesis. Biochem J. 1986 Mar 1;234(2):263–269. doi: 10.1042/bj2340263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pogolotti A. L., Jr, Santi D. V. High-pressure liquid chromatography--ultraviolet analysis of intracellular nucleotides. Anal Biochem. 1982 Nov 1;126(2):335–345. doi: 10.1016/0003-2697(82)90524-3. [DOI] [PubMed] [Google Scholar]
  14. Prem veer Reddy G., Pardee A. B. Multienzyme complex for metabolic channeling in mammalian DNA replication. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3312–3316. doi: 10.1073/pnas.77.6.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ullman B., Gudas L. J., Clift S. M., Martin D. W., Jr Isolation and characterization of purine-nucleoside phosphorylase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: genetic model for immunodeficiency disease. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1074–1078. doi: 10.1073/pnas.76.3.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weber G. Biochemical strategy of cancer cells and the design of chemotherapy: G. H. A. Clowes Memorial Lecture. Cancer Res. 1983 Aug;43(8):3466–3492. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES