Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Nov 15;256(1):205–212. doi: 10.1042/bj2560205

Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing.

J V Hunt 1, R T Dean 1, S P Wolff 1
PMCID: PMC1135388  PMID: 2851978

Abstract

Protein exposed to glucose is cleaved, undergoes conformational change and develops fluorescent adducts ('glycofluorophores'). These changes are presumed to result from the covalent attachment of glucose to amino groups. We have demonstrated, however, that the fragmentation and conformational changes observed are dependent upon hydroxyl radicals produced by glucose autoxidation, or some closely related process, and that antioxidants dissociate structural damage caused by the exposure of glucose to protein from the incorporation of monosaccharide into protein. We have also provided further evidence that glycofluorophore formation is dependent upon metal-catalysed oxidative processes associated with ketoaldehyde formation. If experimental glycation is an adequate model of tissue damage occurring in diabetes mellitus, then these studies indicate a therapeutic role for antioxidants.

Full text

PDF
205

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed M. U., Thorpe S. R., Baynes J. W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein. J Biol Chem. 1986 Apr 15;261(11):4889–4894. [PubMed] [Google Scholar]
  2. Beswick H. T., Harding J. J. Conformational changes induced in lens alpha- and gamma-crystallins by modification with glucose 6-phosphate. Implications for cataract. Biochem J. 1987 Sep 15;246(3):761–769. doi: 10.1042/bj2460761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Finkelstein E., Rosen G. M., Rauckman E. J. Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch Biochem Biophys. 1980 Mar;200(1):1–16. doi: 10.1016/0003-9861(80)90323-9. [DOI] [PubMed] [Google Scholar]
  4. Gutteridge J. M. Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem J. 1987 May 1;243(3):709–714. doi: 10.1042/bj2430709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gutteridge J. M., Wilkins S. Copper salt-dependent hydroxyl radical formation. Damage to proteins acting as antioxidants. Biochim Biophys Acta. 1983 Aug 23;759(1-2):38–41. doi: 10.1016/0304-4165(83)90186-1. [DOI] [PubMed] [Google Scholar]
  6. Gutteridge J. M., Winyard P. G., Blake D. R., Lunec J., Brailsford S., Halliwell B. The behaviour of caeruloplasmin in stored human extracellular fluids in relation to ferroxidase II activity, lipid peroxidation and phenanthroline-detectable copper. Biochem J. 1985 Sep 1;230(2):517–523. doi: 10.1042/bj2300517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HARMAN D. THE FREE RADICAL THEORY OF AGING: EFFECT OF AGE ON SERUM COPPER LEVELS. J Gerontol. 1965 Apr;20:151–153. doi: 10.1093/geronj/20.2.151. [DOI] [PubMed] [Google Scholar]
  8. Halliwell B. Albumin--an important extracellular antioxidant? Biochem Pharmacol. 1988 Feb 15;37(4):569–571. doi: 10.1016/0006-2952(88)90126-8. [DOI] [PubMed] [Google Scholar]
  9. Halliwell B., Gutteridge J. M. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981 Jun 15;128(2):347–352. doi: 10.1016/0014-5793(81)80114-7. [DOI] [PubMed] [Google Scholar]
  10. Harding J. J. Nonenzymatic covalent posttranslational modification of proteins in vivo. Adv Protein Chem. 1985;37:247–334. doi: 10.1016/s0065-3233(08)60066-2. [DOI] [PubMed] [Google Scholar]
  11. Harding J. J., van Heyningen R. Epidemiology and risk factors for cataract. Eye (Lond) 1987;1(Pt 5):537–541. doi: 10.1038/eye.1987.82. [DOI] [PubMed] [Google Scholar]
  12. Harman D. The aging process. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7124–7128. doi: 10.1073/pnas.78.11.7124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunt J. V., Simpson J. A., Dean R. T. Hydroperoxide-mediated fragmentation of proteins. Biochem J. 1988 Feb 15;250(1):87–93. doi: 10.1042/bj2500087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marx G., Chevion M. Site-specific modification of albumin by free radicals. Reaction with copper(II) and ascorbate. Biochem J. 1986 Jun 1;236(2):397–400. doi: 10.1042/bj2360397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McGahan M. C., Bito L. Z. The pathophysiology of the ocular microenvironment. I. Preliminary report on the possible involvement of copper in ocular inflammation. Curr Eye Res. 1982;2(12):883–885. doi: 10.3109/02713688209020026. [DOI] [PubMed] [Google Scholar]
  16. Mitchel R. E., Birnboim H. C. The use of Girard-T reagent in a rapid and sensitive methods for measuring glyoxal and certain other alpha-dicarbonyl compounds. Anal Biochem. 1977 Jul;81(1):47–56. doi: 10.1016/0003-2697(77)90597-8. [DOI] [PubMed] [Google Scholar]
  17. Monnier V. M., Vishwanath V., Frank K. E., Elmets C. A., Dauchot P., Kohn R. R. Relation between complications of type I diabetes mellitus and collagen-linked fluorescence. N Engl J Med. 1986 Feb 13;314(7):403–408. doi: 10.1056/NEJM198602133140702. [DOI] [PubMed] [Google Scholar]
  18. Nath R., Srivastava S. K., Singh K. Accumulation of copper and inhibition of lactate dehydrogenase activity in human senile cataractous lens. Indian J Exp Biol. 1969 Jan;7(1):25–26. [PubMed] [Google Scholar]
  19. Noto R., Alicata R., Sfogliano L., Neri S., Bifarella M. A study of cupremia in a group of elderly diabetics. Acta Diabetol Lat. 1983 Jan-Mar;20(1):81–85. doi: 10.1007/BF02629133. [DOI] [PubMed] [Google Scholar]
  20. Pongor S., Ulrich P. C., Bencsath F. A., Cerami A. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci U S A. 1984 May;81(9):2684–2688. doi: 10.1073/pnas.81.9.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rush J. D., Koppenol W. H. The reaction between ferrous polyaminocarboxylate complexes and hydrogen peroxide: an investigation of the reaction intermediates by stopped flow spectrophotometry. J Inorg Biochem. 1987 Mar;29(3):199–215. doi: 10.1016/0162-0134(87)80027-2. [DOI] [PubMed] [Google Scholar]
  22. Shaklai N., Garlick R. L., Bunn H. F. Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem. 1984 Mar 25;259(6):3812–3817. [PubMed] [Google Scholar]
  23. Stevens V. J., Rouzer C. A., Monnier V. M., Cerami A. Diabetic cataract formation: potential role of glycosylation of lens crystallins. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2918–2922. doi: 10.1073/pnas.75.6.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trüeb B., Holenstein C. G., Fischer R. W., Winterhalter K. H. Nonenzymatic glycosylation of proteins. A warning. J Biol Chem. 1980 Jul 25;255(14):6717–6720. [PubMed] [Google Scholar]
  25. Wolff S. P., Dean R. T. Aldehydes and dicarbonyls in non-enzymic glycosylation of proteins. Biochem J. 1988 Jan 15;249(2):618–619. doi: 10.1042/bj2490618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wolff S. P., Dean R. T. Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymic hydrolysis. Biochem J. 1986 Mar 1;234(2):399–403. doi: 10.1042/bj2340399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wolff S. P., Dean R. T. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes. Biochem J. 1987 Jul 1;245(1):243–250. doi: 10.1042/bj2450243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wolff S. P., Wang G. M., Spector A. Pro-oxidant activation of ocular reductants. 1. Copper and riboflavin stimulate ascorbate oxidation causing lens epithelial cytotoxicity in vitro. Exp Eye Res. 1987 Dec;45(6):777–789. doi: 10.1016/s0014-4835(87)80095-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES