Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1988 Nov 15;256(1):219–223. doi: 10.1042/bj2560219

A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.

C Tiruppathi 1, D F Balkovetz 1, V Ganapathy 1, Y Miyamoto 1, F H Leibach 1
PMCID: PMC1135390  PMID: 2851979

Abstract

An inward-directed H+ gradient markedly stimulated lactate uptake in rabbit intestinal brush-border membrane vesicles, and uphill transport against a concentration gradient could be demonstrated under these conditions. Uptake of lactate was many-fold greater in the presence of a H+ gradient than in the presence of a Na+ gradient. Moreover, there was no evidence for uphill transport of lactate in the presence of a Na+ gradient. The H+-gradient-dependent stimulation of lactate uptake was not due to the effect of a H+-diffusion potential. The uptake process in the presence of a H+ gradient was saturable [Kt (concn. giving half-maximal transport) for lactate 12.7 +/- 4.5 mM] and was inhibited by many monocarboxylates. It is concluded that a H+ gradient, not a Na+ gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eveloff J. p-Aminohippurate transport in basal-lateral membrane vesicles from rabbit renal cortex: stimulation by pH and sodium gradients. Biochim Biophys Acta. 1987 Mar 12;897(3):474–480. doi: 10.1016/0005-2736(87)90444-5. [DOI] [PubMed] [Google Scholar]
  2. Ganapathy, Leibach F. H. Is intestinal peptide transport energized by a proton gradient? Am J Physiol. 1985 Aug;249(2 Pt 1):G153–G160. doi: 10.1152/ajpgi.1985.249.2.G153. [DOI] [PubMed] [Google Scholar]
  3. Ganapathy V., Leibach F. H. Carrier-mediated reabsorption of small peptides in renal proximal tubule. Am J Physiol. 1986 Dec;251(6 Pt 2):F945–F953. doi: 10.1152/ajprenal.1986.251.6.F945. [DOI] [PubMed] [Google Scholar]
  4. Ganapathy V., Mendicino J. F., Leibach F. H. Transport of glycyl-L-proline into intestinal and renal brush border vesicles from rabbit. J Biol Chem. 1981 Jan 10;256(1):118–124. [PubMed] [Google Scholar]
  5. Hildmann B., Storelli C., Haase W., Barac-Nieto M., Murer H. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles. Biochem J. 1980 Jan 15;186(1):169–176. doi: 10.1042/bj1860169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hoshi T. Proton-coupled transport of organic solutes in animal cell membranes and its relation to Na+ transport. Jpn J Physiol. 1985;35(2):179–191. doi: 10.2170/jjphysiol.35.179. [DOI] [PubMed] [Google Scholar]
  7. Hoshi T., Takuwa N., Abe M., Tajima A. Hydrogen ion-coupled transport of D-glucose by phlorizin-sensitive sugar carrier in intestinal brush-border membranes. Biochim Biophys Acta. 1986 Oct 23;861(3):483–488. doi: 10.1016/0005-2736(86)90458-x. [DOI] [PubMed] [Google Scholar]
  8. Jørgensen K. E., Sheikh M. I. Renal transport of neutral amino acids. Cation-dependent uptake of L-alanine by luminal-membrane vesicles. Biochem J. 1987 Dec 1;248(2):533–538. doi: 10.1042/bj2480533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kessler M., Acuto O., Storelli C., Murer H., Müller M., Semenza G. A modified procedure for the rapid preparation of efficiently transporting vesicles from small intestinal brush border membranes. Their use in investigating some properties of D-glucose and choline transport systems. Biochim Biophys Acta. 1978 Jan 4;506(1):136–154. doi: 10.1016/0005-2736(78)90440-6. [DOI] [PubMed] [Google Scholar]
  10. Kurtin P., Charney A. N. Intestinal ion transport and intracellular pH during acute respiratory alkalosis and acidosis. Am J Physiol. 1984 Jul;247(1 Pt 1):G24–G31. doi: 10.1152/ajpgi.1984.247.1.G24. [DOI] [PubMed] [Google Scholar]
  11. Murer H., Hopfer U., Kinne R. Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J. 1976 Mar 15;154(3):597–604. [PMC free article] [PubMed] [Google Scholar]
  12. Nelson P. J., Dean G. E., Aronson P. S., Rudnick G. Hydrogen ion cotransport by the renal brush border glutamate transporter. Biochemistry. 1983 Nov 8;22(23):5459–5463. doi: 10.1021/bi00292a030. [DOI] [PubMed] [Google Scholar]
  13. Rajendran V. M., Barry J. A., Kleinman J. G., Ramaswamy K. Proton gradient-dependent transport of glycine in rabbit renal brush-border membrane vesicles. J Biol Chem. 1987 Nov 5;262(31):14974–14977. [PubMed] [Google Scholar]
  14. Røigaard-Petersen H., Jacobsen C., Iqbal Sheikh M. H+-L-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am J Physiol. 1987 Jul;253(1 Pt 2):F15–F20. doi: 10.1152/ajprenal.1987.253.1.F15. [DOI] [PubMed] [Google Scholar]
  15. Said H. M., Ghishan F. K., Redha R. Folate transport by human intestinal brush-border membrane vesicles. Am J Physiol. 1987 Feb;252(2 Pt 1):G229–G236. doi: 10.1152/ajpgi.1987.252.2.G229. [DOI] [PubMed] [Google Scholar]
  16. Schron C. M., Washington C., Jr, Blitzer B. L. The transmembrane pH gradient drives uphill folate transport in rabbit jejunum. Direct evidence for folate/hydroxyl exchange in brush border membrane vesicles. J Clin Invest. 1985 Nov;76(5):2030–2033. doi: 10.1172/JCI112205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Storelli C., Corcelli A., Cassano G., Hildmann B., Murer H., Lippe C. Polar distribution of sodium-dependent and sodium-independent transport system for L-lactate in the plasma membrane of rat enterocytes. Pflugers Arch. 1980 Oct;388(1):11–16. doi: 10.1007/BF00582622. [DOI] [PubMed] [Google Scholar]
  18. Tiruppathi C., Miyamoto Y., Ganapathy V., Leibach F. H. Fatty acid-induced alterations in transport systems of the small intestinal brush-border membrane. Biochem Pharmacol. 1988 Apr 1;37(7):1399–1405. doi: 10.1016/0006-2952(88)90800-3. [DOI] [PubMed] [Google Scholar]
  19. Vorum H., Jessen H., Jørgensen K. E., Sheikh M. I. Mechanism of transport of L-alanine by luminal-membrane vesicles from pars recta of rabbit proximal tubule. FEBS Lett. 1988 Jan 18;227(1):35–38. doi: 10.1016/0014-5793(88)81408-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES