Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jan 1;257(1):281–284. doi: 10.1042/bj2570281

Is methionine transaminated in skeletal muscle?

G Y Wu 1, J R Thompson 1
PMCID: PMC1135568  PMID: 2920018

Abstract

Methionine transamination is extensive in rat and chick skeletal-muscle homogenates, but is barely detectable in intact rat, but not chick, skeletal muscles. Branched-chain amino acids essentially block methionine transamination in intact muscles and homogenates from both species. The physiological significance of methionine transamination in skeletal muscle is questioned.

Full text

PDF
282

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benevenga N. J. Evidence for alternative pathways of methionine catabolism. Adv Nutr Res. 1984;6:1–18. doi: 10.1007/978-1-4613-2801-8_1. [DOI] [PubMed] [Google Scholar]
  2. Cooper A. J. Biochemistry of sulfur-containing amino acids. Annu Rev Biochem. 1983;52:187–222. doi: 10.1146/annurev.bi.52.070183.001155. [DOI] [PubMed] [Google Scholar]
  3. Cooper A. J., Meister A. Glutamine transaminases. Prog Clin Biol Res. 1984;144B:3–15. [PubMed] [Google Scholar]
  4. Goldberg A. L., Martel S. B., Kushmerick M. J. In vitro preparations of the diaphragm and other skeletal muscles. Methods Enzymol. 1975;39:82–94. doi: 10.1016/s0076-6879(75)39012-5. [DOI] [PubMed] [Google Scholar]
  5. Livesey G., Lund P. Methionine metabolism via the transamination pathway in rat liver. Biochem Soc Trans. 1980 Oct;8(5):540–541. doi: 10.1042/bst0080540. [DOI] [PubMed] [Google Scholar]
  6. Mallet L. E., Exton J. H., Park C. R. Control of gluconeogenesis from amino acids in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5713–5723. [PubMed] [Google Scholar]
  7. Maruyama K., Sunde M. L., Harper A. E. Conditions affecting plasma amino acid patterns in chickens fed practical and purified diets. Poult Sci. 1976 Sep;55(5):1615–1626. doi: 10.3382/ps.0551615. [DOI] [PubMed] [Google Scholar]
  8. Mitch W. E., Clark A. S. Specificity of the effects of leucine and its metabolites on protein degradation in skeletal muscle. Biochem J. 1984 Sep 15;222(3):579–586. doi: 10.1042/bj2220579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitchell A. D., Benevenga N. J. The role of transamination in methionine oxidation in the rat. J Nutr. 1978 Jan;108(1):67–78. doi: 10.1093/jn/108.1.67. [DOI] [PubMed] [Google Scholar]
  10. Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
  11. Scislowski P. W., Hokland B. M., Davis-van Thienen W. I., Bremer J., Davis E. J. Methionine metabolism by rat muscle and other tissues. Occurrence of a new carnitine intermediate. Biochem J. 1987 Oct 1;247(1):35–40. doi: 10.1042/bj2470035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stipanuk M. H. Metabolism of sulfur-containing amino acids. Annu Rev Nutr. 1986;6:179–209. doi: 10.1146/annurev.nu.06.070186.001143. [DOI] [PubMed] [Google Scholar]
  13. Tischler M. E., Desautels M., Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J Biol Chem. 1982 Feb 25;257(4):1613–1621. [PubMed] [Google Scholar]
  14. Wu G., Thompson J. R. Ketone bodies inhibit leucine degradation in chick skeletal muscle. Int J Biochem. 1987;19(10):937–943. doi: 10.1016/0020-711x(87)90175-3. [DOI] [PubMed] [Google Scholar]
  15. Xue G. P., Snoswell A. M. Quantitative evaluation and regulation of S-adenosylmethionine-dependent transmethylation in sheep tissues. Comp Biochem Physiol B. 1986;85(3):601–608. doi: 10.1016/0305-0491(86)90055-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES