Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Feb 1;257(3):913–916. doi: 10.1042/bj2570913

Pyruvate carboxylation in the rat heart. Role of biotin-dependent enzymes.

K E Sundqvist 1, J K Hiltunen 1, I E Hassinen 1
PMCID: PMC1135674  PMID: 2930495

Abstract

Pyruvate carboxylation in the isolated perfused rat heart was studied under steady-state conditions. A biotin deficiency resulting in a 90% decrease in myocardial pyruvate carboxylase left the pyruvate carboxylation rate unchanged. Pyruvate carboxylation in heart muscle must therefore take place by means of an enzyme which does not contain biotin. The kinetic properties and mass-action ratio of the NADP-linked malic enzyme in heart muscle can be taken as circumstantial evidence in favour of the role of malic enzyme in pyruvate carboxylation in myocardium.

Full text

PDF
916

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman R. H. Effects of diabetes, fatty acids, and ketone bodies on tricarboxylic acid cycle metabolism in the perfused rat heart. J Biol Chem. 1966 Jul 10;241(13):3041–3048. [PubMed] [Google Scholar]
  2. Böttger I., Wieland O., Brdiczka D., Pette D. Intracellular localization of pyruvate carboxylase and phosphoenolpyruvate carboxykinase in rat liver. Eur J Biochem. 1969 Mar;8(1):113–119. doi: 10.1111/j.1432-1033.1969.tb00503.x. [DOI] [PubMed] [Google Scholar]
  3. Davis E. J., Spydevold O., Bremer J. Pyruvate carboxylase and propionyl-CoA carboxylase as anaplerotic enzymes in skeletal muscle mitochondria. Eur J Biochem. 1980 Sep;110(1):255–262. doi: 10.1111/j.1432-1033.1980.tb04863.x. [DOI] [PubMed] [Google Scholar]
  4. GARLAND P. B., RANDLE P. J., NEWSHOLME E. A. CITRATE AS AN INTERMEDIARY IN THE INHIBITION OF PHOSPHOFRUCTOKINASE IN RAT HEART MUSCLE BY FATTY ACIDS, KETONE BODIES, PYRUVATE, DIABETES, AND STARVATION. Nature. 1963 Oct 12;200:169–170. doi: 10.1038/200169a0. [DOI] [PubMed] [Google Scholar]
  5. Hiltunen J. K., Hassinen I. E. Energy-linked regulation of glucose and pyruvate oxidation in isolated perfused rat heart. Role of pyruvate dehydrogenase. Biochim Biophys Acta. 1976 Aug 13;440(2):377–390. doi: 10.1016/0005-2728(76)90072-4. [DOI] [PubMed] [Google Scholar]
  6. LIEBER C. S., JONES D. P., DECARLI L. M. EFFECTS OF PROLONGED ETHANOL INTAKE: PRODUCTION OF FATTY LIVER DESPITE ADEQUATE DIETS. J Clin Invest. 1965 Jun;44:1009–1021. doi: 10.1172/JCI105200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. LaNoue K., Nicklas W. J., Williamson J. R. Control of citric acid cycle activity in rat heart mitochondria. J Biol Chem. 1970 Jan 10;245(1):102–111. [PubMed] [Google Scholar]
  8. Latipä P. M., Peuhkurinen K. J., Hiltunen J. K., Hassinen I. E. Regulation of pyruvate dehydrogenase during infusion of fatty acids of varying chain lengths in the perfused rat heart. J Mol Cell Cardiol. 1985 Dec;17(12):1161–1171. doi: 10.1016/s0022-2828(85)80112-7. [DOI] [PubMed] [Google Scholar]
  9. Lieber C. S., DeCarli L. M. Quantitative relationship between amount of dietary fat and severity of alcoholic fatty liver. Am J Clin Nutr. 1970 Apr;23(4):474–478. doi: 10.1093/ajcn/23.4.474. [DOI] [PubMed] [Google Scholar]
  10. Lin R. C., Davis E. J. Malic enzymes of rabbit heart mitochondria. Separation and comparison of some characteristics of a nicotinamide adenine dinucleotide-preferring and a nicotinamide adenine dinucleotide phosphate-specific enzyme. J Biol Chem. 1974 Jun 25;249(12):3867–3875. [PubMed] [Google Scholar]
  11. McClure W. R., Lardy H. A. Rat liver pyruvate carboxylase. IV. Factors affeing the regulation in vivo. J Biol Chem. 1971 Jun 10;246(11):3591–3596. [PubMed] [Google Scholar]
  12. Moreadith R. W., Lehninger A. L. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984 May 25;259(10):6215–6221. [PubMed] [Google Scholar]
  13. Nolte J., Brdiczka D., Pette D. Intracellular distribution of phosphoenolpyruvate carboxylase and (NADP) malate dehydrogenase in different muscle types. Biochim Biophys Acta. 1972 Oct 12;284(2):497–507. doi: 10.1016/0005-2744(72)90148-9. [DOI] [PubMed] [Google Scholar]
  14. Nuutinen E. M., Peuhkurinen K. J., Pietiläinen E. P., Hiltunen J. K., Hassinen I. E. Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J. 1981 Mar 15;194(3):867–875. doi: 10.1042/bj1940867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peuhkurinen K. J., Hassinen I. E. Pyruvate carboxylation as an anaplerotic mechanism in the isolated perfused rat heart. Biochem J. 1982 Jan 15;202(1):67–76. doi: 10.1042/bj2020067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Peuhkurinen K. J., Nuutinen E. M., Pietiläinen E. P., Hiltunen J. K., Hassinen I. E. Role of pyruvate carboxylation in the energy-linked regulation of pool sizes of tricarboxylic acid-cycle intermediates in the myocardium. Biochem J. 1982 Dec 15;208(3):577–581. doi: 10.1042/bj2080577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peuhkurinen K. J. Regulation of the tricarboxylic acid cycle pool size in heart muscle. J Mol Cell Cardiol. 1984 Jun;16(6):487–495. doi: 10.1016/s0022-2828(84)80637-9. [DOI] [PubMed] [Google Scholar]
  18. Peuhkurinen K. J., Takala T. E., Nuutinen E. M., Hassinen I. E. Tricarboxylic acid cycle metabolites during ischemia in isolated perfused rat heart. Am J Physiol. 1983 Feb;244(2):H281–H288. doi: 10.1152/ajpheart.1983.244.2.H281. [DOI] [PubMed] [Google Scholar]
  19. Randle P. J., England P. J., Denton R. M. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart. Biochem J. 1970 May;117(4):677–695. doi: 10.1042/bj1170677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scrutton M. C., White M. D. Pyruvate carboxylase. Inhibition of the mammalian and avian liver enzymes by alpha-ketoglutarate and L-glutamate. J Biol Chem. 1974 Sep 10;249(17):5405–5415. [PubMed] [Google Scholar]
  21. Sundqvist K. E., Heikkilä J., Hassinen I. E., Hiltunen J. K. Role of NADP+ (corrected)-linked malic enzymes as regulators of the pool size of tricarboxylic acid-cycle intermediates in the perfused rat heart. Biochem J. 1987 May 1;243(3):853–857. doi: 10.1042/bj2430853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Swierczyński J., Stankiewicz A., Scislowski P., Aleksandrowicz Z. Isolation and regulatory properties of mitochondrial malic enzyme from rat skeletal muscle. Biochim Biophys Acta. 1980 Mar 14;612(1):1–10. doi: 10.1016/0005-2744(80)90273-9. [DOI] [PubMed] [Google Scholar]
  23. WOLLENBERGER A., RISTAU O., SCHOFFA G. [A simple technic for extremely rapid freezing of large pieces of tissue]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:399–412. [PubMed] [Google Scholar]
  24. Williamson J. R., Cooper R. H. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 1980 Aug 25;117 (Suppl):K73–K85. doi: 10.1016/0014-5793(80)80572-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES