Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Aug 15;310(Pt 1):255–261. doi: 10.1042/bj3100255

Structural analysis of inositol phospholipids from Trypanosoma cruzi epimastigote forms.

L E Bertello 1, M F Gonçalvez 1, W Colli 1, R M de Lederkremer 1
PMCID: PMC1135881  PMID: 7646454

Abstract

Inositol phospholipids (IPL) from epimastigote forms of Trypanosoma cruzi have been investigated by metabolic labelling with [3H]palmitic acid and by GLC-MS analysis of the lipids obtained from non-labelled parasites. The IPL fraction was separated into phosphatidylinositol (PI) and inositol-phosphoceramide subfractions, the latter accounting for 80-85% of the total IPL. The neutral lipids released from the IPLs by PI-specific phospholipase C (PI-PLC) from Bacillus thuringiensis were analysed by silica-gel and reverse-phase TLC for the radioactive lipids and by GLC-MS for the non-radioactive samples. Ceramides containing dihydrosphingosine and sphingosine with C16:0 and C18:0 fatty acids were identified. The main component in the [3H]palmitic acid-labelled ceramides was palmitoyldihydrospingosine, while in the non-labelled sample the ceramides contained mainly sphingosine. This could reflect partial uptake of phospholipid from the medium. The PI contain both alkylacyl- and diacyl-glycerol lipids, with the ether lipid being more abundant. The latter was identified as 1-O-hexadecylglycerol esterified by C18:2 and C18:1 fatty acids. Interestingly, the same lipid had been identified in the anchor of the 1G7 glycoprotein of T. cruzi metacyclic forms.

Full text

PDF
258

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alves M. J., Abuin G., Kuwajima V. Y., Colli W. Partial inhibition of trypomastigote entry into cultured mammalian cells by monoclonal antibodies against a surface glycoprotein of Trypanosoma cruzi. Mol Biochem Parasitol. 1986 Oct;21(1):75–82. doi: 10.1016/0166-6851(86)90081-2. [DOI] [PubMed] [Google Scholar]
  2. Andrews N. W., Robbins E. S., Ley V., Hong K. S., Nussenzweig V. Developmentally regulated, phospholipase C-mediated release of the major surface glycoprotein of amastigotes of Trypanosoma cruzi. J Exp Med. 1988 Feb 1;167(2):300–314. doi: 10.1084/jem.167.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Becker G. W., Lester R. L. Biosynthesis of phosphoinositol-containing sphingolipids from phosphatidylinositol by a membrane preparation from Saccharomyces cerevisiae. J Bacteriol. 1980 Jun;142(3):747–754. doi: 10.1128/jb.142.3.747-754.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castellani O., Ribeiro L. V., Fernandes J. F. Differentiation of Trypanosoma cruzi in culture. J Protozool. 1967 Aug;14(3):447–451. doi: 10.1111/j.1550-7408.1967.tb02024.x. [DOI] [PubMed] [Google Scholar]
  5. Contreras V. T., Morel C. M., Goldenberg S. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol. 1985 Jan;14(1):83–96. doi: 10.1016/0166-6851(85)90108-2. [DOI] [PubMed] [Google Scholar]
  6. Conzelmann A., Puoti A., Lester R. L., Desponds C. Two different types of lipid moieties are present in glycophosphoinositol-anchored membrane proteins of Saccharomyces cerevisiae. EMBO J. 1992 Feb;11(2):457–466. doi: 10.1002/j.1460-2075.1992.tb05075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Couto A. S., De Lederkremer R. M., Colli W., Alves M. J. The glycosylphosphatidylinositol anchor of the trypomastigote-specific Tc-85 glycoprotein from Trypanosoma cruzi. Metabolic-labeling and structural studies. Eur J Biochem. 1993 Oct 15;217(2):597–602. doi: 10.1111/j.1432-1033.1993.tb18282.x. [DOI] [PubMed] [Google Scholar]
  8. Cross G. A., Takle G. B. The surface trans-sialidase family of Trypanosoma cruzi. Annu Rev Microbiol. 1993;47:385–411. doi: 10.1146/annurev.mi.47.100193.002125. [DOI] [PubMed] [Google Scholar]
  9. Docampo R., Pignataro O. P. The inositol phosphate/diacylglycerol signalling pathway in Trypanosoma cruzi. Biochem J. 1991 Apr 15;275(Pt 2):407–411. doi: 10.1042/bj2750407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doering T. L., Pessin M. S., Hart G. W., Raben D. M., Englund P. T. The fatty acids in unremodelled trypanosome glycosyl-phosphatidylinositols. Biochem J. 1994 May 1;299(Pt 3):741–746. doi: 10.1042/bj2990741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fankhauser C., Homans S. W., Thomas-Oates J. E., McConville M. J., Desponds C., Conzelmann A., Ferguson M. A. Structures of glycosylphosphatidylinositol membrane anchors from Saccharomyces cerevisiae. J Biol Chem. 1993 Dec 15;268(35):26365–26374. [PubMed] [Google Scholar]
  12. Franco da Silveira J., Colli W. Chemical composition of the plasma membrane from epimastigote forms of Trypanosoma cruzi. Biochim Biophys Acta. 1981 Jun 22;644(2):341–350. doi: 10.1016/0005-2736(81)90392-8. [DOI] [PubMed] [Google Scholar]
  13. Güther M. L., de Almeida M. L., Yoshida N., Ferguson M. A. Structural studies on the glycosylphosphatidylinositol membrane anchor of Trypanosoma cruzi 1G7-antigen. The structure of the glycan core. J Biol Chem. 1992 Apr 5;267(10):6820–6828. [PubMed] [Google Scholar]
  14. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  15. Heise N., de Almeida M. L., Ferguson M. A. Characterization of the lipid moiety of the glycosylphosphatidylinositol anchor of Trypanosoma cruzi 1G7-antigen. Mol Biochem Parasitol. 1995 Mar;70(1-2):71–84. doi: 10.1016/0166-6851(95)00009-p. [DOI] [PubMed] [Google Scholar]
  16. Ledeen R. W., Yu R. K. Gangliosides: structure, isolation, and analysis. Methods Enzymol. 1982;83:139–191. doi: 10.1016/0076-6879(82)83012-7. [DOI] [PubMed] [Google Scholar]
  17. Masterson W. J., Raper J., Doering T. L., Hart G. W., Englund P. T. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell. 1990 Jul 13;62(1):73–80. doi: 10.1016/0092-8674(90)90241-6. [DOI] [PubMed] [Google Scholar]
  18. McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Myher J. J., Marai L., Kuksis A. Identification of monoacyl- and monoalkylglycerols by gas--liquid chromatography--mass spectrometry using polar siloxane liquid phases. J Lipid Res. 1974 Nov;15(6):586–592. [PubMed] [Google Scholar]
  20. Pollevick G. D., Affranchino J. L., Frasch A. C., Sánchez D. O. The complete sequence of a shed acute-phase antigen of Trypanosoma cruzi. Mol Biochem Parasitol. 1991 Aug;47(2):247–250. doi: 10.1016/0166-6851(91)90185-9. [DOI] [PubMed] [Google Scholar]
  21. Previato J. O., Gorin P. A., Mazurek M., Xavier M. T., Fournet B., Wieruszesk J. M., Mendonça-Previato L. Primary structure of the oligosaccharide chain of lipopeptidophosphoglycan of epimastigote forms of Trypanosoma cruzi. J Biol Chem. 1990 Feb 15;265(5):2518–2526. [PubMed] [Google Scholar]
  22. Previato J. O., Mendonça-Previato L., Jones C., Wait R., Fournet B. Structural characterization of a novel class of glycophosphosphingolipids from the protozoan Leptomonas samueli. J Biol Chem. 1992 Dec 5;267(34):24279–24286. [PubMed] [Google Scholar]
  23. Routier F. H., da Silveira E. X., Wait R., Jones C., Previato J. O., Mendonça-Previato L. Chemical characterisation of glycosylinositolphospholipids of Herpetomonas samuelpessoai. Mol Biochem Parasitol. 1995 Jan;69(1):81–92. doi: 10.1016/0166-6851(94)00202-x. [DOI] [PubMed] [Google Scholar]
  24. Samuelsson B., Samuelsson K. Gas--liquid chromatography-mass spectrometry of synthetic ceramides. J Lipid Res. 1969 Jan;10(1):41–46. [PubMed] [Google Scholar]
  25. Schenkman S., Ferguson M. A., Heise N., de Almeida M. L., Mortara R. A., Yoshida N. Mucin-like glycoproteins linked to the membrane by glycosylphosphatidylinositol anchor are the major acceptors of sialic acid in a reaction catalyzed by trans-sialidase in metacyclic forms of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Jun;59(2):293–303. doi: 10.1016/0166-6851(93)90227-o. [DOI] [PubMed] [Google Scholar]
  26. Schenkman S., Yoshida N., Cardoso de Almeida M. L. Glycophosphatidylinositol-anchored proteins in metacyclic trypomastigotes of Trypanosoma cruzi. Mol Biochem Parasitol. 1988 Jun;29(2-3):141–151. doi: 10.1016/0166-6851(88)90069-2. [DOI] [PubMed] [Google Scholar]
  27. Singh B. N., Costello C. E., Beach D. H., Holz G. G., Jr Di-O-alkylglycerol, mono-O-alkylglycerol and ceramide inositol phosphates of Leishmania mexicana mexicana promastigotes. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1239–1246. doi: 10.1016/s0006-291x(88)81007-6. [DOI] [PubMed] [Google Scholar]
  28. Sipos G., Puoti A., Conzelmann A. Glycosylphosphatidylinositol membrane anchors in Saccharomyces cerevisiae: absence of ceramides from complete precursor glycolipids. EMBO J. 1994 Jun 15;13(12):2789–2796. doi: 10.1002/j.1460-2075.1994.tb06572.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. de Lederkremer R. M., Lima C. E., Ramirez M. I., Gonçalvez M. F., Colli W. Hexadecylpalmitoylglycerol or ceramide is linked to similar glycophosphoinositol anchor-like structures in Trypanosoma cruzi. Eur J Biochem. 1993 Dec 15;218(3):929–936. doi: 10.1111/j.1432-1033.1993.tb18449.x. [DOI] [PubMed] [Google Scholar]
  30. de Lederkremer R. M., Lima C., Ramirez M. I., Casal O. L. Structural features of the lipopeptidophosphoglycan from Trypanosoma cruzi common with the glycophosphatidylinositol anchors. Eur J Biochem. 1990 Sep 11;192(2):337–345. doi: 10.1111/j.1432-1033.1990.tb19232.x. [DOI] [PubMed] [Google Scholar]
  31. de Lederkremer R. M., Lima C., Ramirez M. I., Ferguson M. A., Homans S. W., Thomas-Oates J. Complete structure of the glycan of lipopeptidophosphoglycan from Trypanosoma cruzi Epimastigotes. J Biol Chem. 1991 Dec 15;266(35):23670–23675. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES