Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 1;310(Pt 2):507–516. doi: 10.1042/bj3100507

Isocitrate dehydrogenase from bovine heart: primary structure of subunit 3/4.

Y Zeng 1, C Weiss 1, T T Yao 1, J Huang 1, L Siconolfi-Baez 1, P Hsu 1, J I Rushbrook 1
PMCID: PMC1135924  PMID: 7654189

Abstract

Bovine NAD(+)-dependent isocitrate dehydrogenase was shown previously to contain four subunits of approx. 40 kDa (subunits 1-4) possessing different peptide maps and electrophoretic properties [Rushbrook and Harvey (1978) Biochemistry 17, 5339-5346]. In this study the heterogeneity is confirmed using enzyme purified by updated methods and from single animals, ruling out allelic variability. Subunits 1 and 2 were differentiated from each other and from subunits 3 and 4 by N-terminal amino acid sequencing. Subunits 3 and 4 (subunits 3/4) were identical in sequence over 30 residues. The N-terminal residues of subunits 1 and 2 were homologous but not identical with the beta- and gamma-subunits respectively of the comparable pig heart enzyme. Subunits 3/4 were identical over 30 residues with the N-terminus of the pig heart alpha-subunit. Full-length sequence, including that for mitochondrial import, is presented for a protein with the processed N-terminus of subunits 3/4, deduced from cloned cDNA obtained utilizing the N-terminal sequence information. The derived amino acid sequence for the mature protein contains 339 amino acids and has a molecular mass of 36,685 Da. Complete identity with N-terminal and Cys-containing peptides totalling 92 residues from the alpha-subunit of the pig heart enzyme [Huang and Colman (1990) Biochemistry 29, 8266-8273] suggests that maintenance of a particular three-dimensional structure in this subunit is crucial to the function of the enzyme. An electrophoretic heterogeneity within the pig heart alpha-subunit, similar to that shown by bovine subunits 3/4, was demonstrated. One reordering of the Cys-containing peptides of the pig heart alpha-subunit is indicated. Sequence comparison with the distantly related NADP(+)-dependent enzyme from Escherichia coli, for which the three-dimensional structure is known [Stoddard, Dean and Koshland (1993) Biochemistry 32, 9310-9316] shows strong conservation of residues binding isocitrate, Mg2+ and the NAD+ moiety of NADP+, consistent with a catalytic function.

Full text

PDF
509

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffray C., Rougeon F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem. 1980 Jun;107(2):303–314. doi: 10.1111/j.1432-1033.1980.tb06030.x. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes L. D., Kuehn G. D., Atkinson D. E. Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry. 1971 Oct 12;10(21):3939–3944. doi: 10.1021/bi00797a022. [DOI] [PubMed] [Google Scholar]
  4. CHEN R. F., PLAUT G. W. ACTIVATION AND INHIBITION OF DPN-LINKED ISOCITRATE DEHYDROGENASE OF HEART BY CERTAIN NUCLEOTIDES. Biochemistry. 1963 Sep-Oct;2:1023–1032. doi: 10.1021/bi00905a020. [DOI] [PubMed] [Google Scholar]
  5. Cohen P. F., Colman R. F. Purification of NAD-specific isocitrate dehydrogenase from porcine heart. Biochim Biophys Acta. 1971 Aug 20;242(2):325–330. doi: 10.1016/0005-2744(71)90224-5. [DOI] [PubMed] [Google Scholar]
  6. Cupp J. R., McAlister-Henn L. Cloning and characterization of the gene encoding the IDH1 subunit of NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem. 1992 Aug 15;267(23):16417–16423. [PubMed] [Google Scholar]
  7. Cupp J. R., McAlister-Henn L. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry. 1993 Sep 14;32(36):9323–9328. doi: 10.1021/bi00087a010. [DOI] [PubMed] [Google Scholar]
  8. Cupp J. R., McAlister-Henn L. NAD(+)-dependent isocitrate dehydrogenase. Cloning, nucleotide sequence, and disruption of the IDH2 gene from Saccharomyces cerevisiae. J Biol Chem. 1991 Nov 25;266(33):22199–22205. [PubMed] [Google Scholar]
  9. Dean A. M., Lee M. H., Koshland D. E., Jr Phosphorylation inactivates Escherichia coli isocitrate dehydrogenase by preventing isocitrate binding. J Biol Chem. 1989 Dec 5;264(34):20482–20486. [PubMed] [Google Scholar]
  10. Dekker P. J., Stuurman J., van Oosterum K., Grivell L. A. Determinants for binding of a 40 kDa protein to the leaders of yeast mitochondrial mRNAs. Nucleic Acids Res. 1992 Jun 11;20(11):2647–2655. doi: 10.1093/nar/20.11.2647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edwards J. B., Delort J., Mallet J. Oligodeoxyribonucleotide ligation to single-stranded cDNAs: a new tool for cloning 5' ends of mRNAs and for constructing cDNA libraries by in vitro amplification. Nucleic Acids Res. 1991 Oct 11;19(19):5227–5232. doi: 10.1093/nar/19.19.5227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ehrlich R. S., Colman R. F. Binding of ligands to half of subunits of NAD-dependent isocitrate dehydrogenase from pig heart. Binding of manganous ion, isocitrate, ADP and NAD. J Biol Chem. 1981 Feb 10;256(3):1276–1282. [PubMed] [Google Scholar]
  13. Ehrlich R. S., Colman R. F. Interrelationships among nucleotide binding sites of pig heart NAD-dependent isocitrate dehydrogenase. J Biol Chem. 1982 May 10;257(9):4769–4774. [PubMed] [Google Scholar]
  14. Ehrlich R. S., Colman R. F. Separation, recombination, and characterization of dissimilar subunits of the DPN-dependent isocitrate dehydrogenase from pig heart. J Biol Chem. 1983 Jun 10;258(11):7079–7086. [PubMed] [Google Scholar]
  15. Ehrlich R. S., Colman R. F. The role of dissimilar subunits of NAD-specific isocitrate dehydrogenase from pig heart. Evaluation using affinity labeling. J Biol Chem. 1984 Oct 10;259(19):11936–11942. [PubMed] [Google Scholar]
  16. Ehrlich R. S., Hayman S., Ramachandran N., Colman R. F. Re-evaluation of molecular weight of pig heart NAD-specific isocitrate dehydrogenase. J Biol Chem. 1981 Oct 25;256(20):10560–10564. [PubMed] [Google Scholar]
  17. Elzinga S. D., Bednarz A. L., van Oosterum K., Dekker P. J., Grivell L. A. Yeast mitochondrial NAD(+)-dependent isocitrate dehydrogenase is an RNA-binding protein. Nucleic Acids Res. 1993 Nov 25;21(23):5328–5331. doi: 10.1093/nar/21.23.5328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fan C. C., Lin J. P., Plaut G. W. Effects of temperature on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. Aspects of the kinetics, stability, and quarternary structure of the enzyme. J Biol Chem. 1975 Mar 25;250(6):2022–2027. [PubMed] [Google Scholar]
  19. Frohman M. A., Dush M. K., Martin G. R. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998–9002. doi: 10.1073/pnas.85.23.8998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Giorgio N. A., Jr, Yip A. T., Fleming J., Plaut G. W. Diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. Polymeric forms and subunits. J Biol Chem. 1970 Oct 25;245(20):5469–5477. [PubMed] [Google Scholar]
  21. Hentze M. W. Enzymes as RNA-binding proteins: a role for (di)nucleotide-binding domains? Trends Biochem Sci. 1994 Mar;19(3):101–103. doi: 10.1016/0968-0004(94)90198-8. [DOI] [PubMed] [Google Scholar]
  22. Huang Y. C., Colman R. F. Subunit location and sequences of the cysteinyl peptides of pig heart NAD-dependent isocitrate dehydrogenase. Biochemistry. 1990 Sep 11;29(36):8266–8273. doi: 10.1021/bi00488a010. [DOI] [PubMed] [Google Scholar]
  23. Hurley J. H., Dean A. M., Koshland D. E., Jr, Stroud R. M. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes. Biochemistry. 1991 Sep 3;30(35):8671–8678. doi: 10.1021/bi00099a026. [DOI] [PubMed] [Google Scholar]
  24. Hurley J. H., Thorsness P. E., Ramalingam V., Helmers N. H., Koshland D. E., Jr, Stroud R. M. Structure of a bacterial enzyme regulated by phosphorylation, isocitrate dehydrogenase. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8635–8639. doi: 10.1073/pnas.86.22.8635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Illingworth J. A. Purification of yeast isocitrate dehydrogenase. Biochem J. 1972 Oct;129(5):1119–1124. doi: 10.1042/bj1291119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Imada K., Sato M., Tanaka N., Katsube Y., Matsuura Y., Oshima T. Three-dimensional structure of a highly thermostable enzyme, 3-isopropylmalate dehydrogenase of Thermus thermophilus at 2.2 A resolution. J Mol Biol. 1991 Dec 5;222(3):725–738. doi: 10.1016/0022-2836(91)90508-4. [DOI] [PubMed] [Google Scholar]
  27. Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 1987 Oct 26;15(20):8125–8148. doi: 10.1093/nar/15.20.8125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. LaPorte D. C., Koshland D. E., Jr Phosphorylation of isocitrate dehydrogenase as a demonstration of enhanced sensitivity in covalent regulation. Nature. 1983 Sep 22;305(5932):286–290. doi: 10.1038/305286a0. [DOI] [PubMed] [Google Scholar]
  29. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  30. Nichols B. J., Hall L., Perry A. C., Denton R. M. Molecular cloning and deduced amino acid sequences of the gamma-subunits of rat and monkey NAD(+)-isocitrate dehydrogenases. Biochem J. 1993 Oct 15;295(Pt 2):347–350. doi: 10.1042/bj2950347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Papadopoulou B., Dekker P., Blom J., Grivell L. A. A 40 kd protein binds specifically to the 5'-untranslated regions of yeast mitochondrial mRNAs. EMBO J. 1990 Dec;9(12):4135–4143. doi: 10.1002/j.1460-2075.1990.tb07636.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Plaut G. W., Schramm V. L., Aogaichi T. Action of magnesium ion on diphosphopyridine nucleotide-linked isocitrate dehydrogenase from bovine heart. Characterization of the forms of the substrate and the modifier of the reaction. J Biol Chem. 1974 Mar 25;249(6):1848–1856. [PubMed] [Google Scholar]
  33. Ramachandran N., Colman R. F. Chemical characterization of distinct subunits of pig heart DPN-specific isocitrate dehydrogenase. J Biol Chem. 1980 Sep 25;255(18):8859–8864. [PubMed] [Google Scholar]
  34. Ramachandran N., Colman R. F. Evidence for the presence of two nonidentical subunits in NAD-dependent isocitrate dehydrogenase of pig heart. Proc Natl Acad Sci U S A. 1978 Jan;75(1):252–255. doi: 10.1073/pnas.75.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rushbrook J. I., Harvey R. A. Nicotinamide adenine dinucleotide dependent isocitrate dehydrogenase from beef heart: subunit heterogeneity and enzyme dissociation. Biochemistry. 1978 Dec 12;17(25):5339–5346. doi: 10.1021/bi00618a003. [DOI] [PubMed] [Google Scholar]
  36. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Saraste M., Sibbald P. R., Wittinghofer A. The P-loop--a common motif in ATP- and GTP-binding proteins. Trends Biochem Sci. 1990 Nov;15(11):430–434. doi: 10.1016/0968-0004(90)90281-f. [DOI] [PubMed] [Google Scholar]
  38. Shen W. C., Mauck L., Colman R. F. Physicochemical properties of the diphosphopyridine nucleotide-specific isocitrate dehydrogenase of pig heart. J Biol Chem. 1974 Dec 25;249(24):7942–7949. [PubMed] [Google Scholar]
  39. Stoddard B. L., Dean A., Koshland D. E., Jr Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex. Biochemistry. 1993 Sep 14;32(36):9310–9316. doi: 10.1021/bi00087a008. [DOI] [PubMed] [Google Scholar]
  40. Stoddard B. L., Koshland D. E., Jr Structure of isocitrate dehydrogenase with alpha-ketoglutarate at 2.7-A resolution: conformational changes induced by decarboxylation of isocitrate. Biochemistry. 1993 Sep 14;32(36):9317–9322. doi: 10.1021/bi00087a009. [DOI] [PubMed] [Google Scholar]
  41. Thorsness P. E., Koshland D. E., Jr Inactivation of isocitrate dehydrogenase by phosphorylation is mediated by the negative charge of the phosphate. J Biol Chem. 1987 Aug 5;262(22):10422–10425. [PubMed] [Google Scholar]
  42. Zasloff M., Ginder G. D., Felsenfeld G. A new method for the purification and identification of covalently closed circular DNA molcules. Nucleic Acids Res. 1978 Apr;5(4):1139–1152. doi: 10.1093/nar/5.4.1139. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES