Abstract
The structure-function relationships of purified Rhodotorula gracilis D-amino acid oxidase (in its holo-, apo- and holo-enzyme-benzoate complex forms) was analysed by digestion with trypsin. In all cases trypsin cleaves this 80 kDa dimeric enzyme at the C-terminal region, since the peptide bonds sensitive to proteinase attack are clustered in this region. Digestion of native enzyme with trypsin produced a nicked and truncated form of 38.3 kDa containing two polypeptides of 34 and 5 kDa starting from Met1 and Ala319 respectively, and with detachment of the Thr306-Arg318 and Glu365-Leu368 peptides. Our results show that this 'core', folded into a compact structure, is catalytically competent. The acquisition of this nicked form was marked by a shift from a dimeric to a monomeric active enzyme, a result never previously obtained. The deleted sequences, Thr306-Arg318 and Glu365-Leu368, are essential for the monomer-monomer interaction, and, in particular, the region encompassing Thr306-Arg318 should play an essential role in the dimerization process. interestingly, the Ser308-Lys321 sequence present in the lost peptide corresponds to a sequence not present in other known D-amino acid oxidases [Faotto, Pollegioni, Ceciliani, Ronchi and Pilone (1995) Biotechnol. Lett. 17, 193-198]. A role of the cleaved-off region for the thermostabilization of the enzyme is also discussed.
Full text
PDF![577](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/fb166a11ef39/biochemj00056-0212.png)
![578](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/e5c259eb2fd1/biochemj00056-0213.png)
![579](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/a80bb1d2c0ed/biochemj00056-0214.png)
![580](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/f82cd040a5e2/biochemj00056-0215.png)
![581](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/a5338e582e3b/biochemj00056-0216.png)
![582](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/aa27382c33cf/biochemj00056-0217.png)
![583](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/1135934/13997c1b09d5/biochemj00056-0218.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Casalin P., Pollegioni L., Curti B., Pilone Simonetta M. A study on apoenzyme from Rhodotorula gracilis D-amino acid oxidase. Eur J Biochem. 1991 Apr 23;197(2):513–517. doi: 10.1111/j.1432-1033.1991.tb15939.x. [DOI] [PubMed] [Google Scholar]
- Cohen S. A., Michaud D. P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem. 1993 Jun;211(2):279–287. doi: 10.1006/abio.1993.1270. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
- Fonda M. L., Anderson B. M. D-amino acid oxidase. I. Spectrophotometric studies. J Biol Chem. 1967 Sep 10;242(17):3957–3962. [PubMed] [Google Scholar]
- Gadda G., Beretta G. L., Pilone M. S. Chemical modification of lysyl residues of Rhodotorula gracilis D-amino acid oxidase. Biochem Mol Biol Int. 1994 Aug;33(5):947–955. [PubMed] [Google Scholar]
- Gadda G., Negri A., Pilone M. S. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis. J Biol Chem. 1994 Jul 8;269(27):17809–17814. [PubMed] [Google Scholar]
- Gould S. J., Keller G. A., Subramani S. Identification of peroxisomal targeting signals located at the carboxy terminus of four peroxisomal proteins. J Cell Biol. 1988 Sep;107(3):897–905. doi: 10.1083/jcb.107.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim Y. T., Richardson C. C. Acidic carboxyl-terminal domain of gene 2.5 protein of bacteriophage T7 is essential for protein-protein interactions. J Biol Chem. 1994 Feb 18;269(7):5270–5278. [PubMed] [Google Scholar]
- Kristjansson M. M., Kinsella J. E. Alkaline serine proteinase from Thermomonospora fusca YX. Stability to heat and denaturants. Biochem J. 1990 Aug 15;270(1):51–55. doi: 10.1042/bj2700051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MASSEY V., GIBSON Q. H. ROLE OF SEMIQUINONES IN FLAVOPROTEIN CATALYSIS. Fed Proc. 1964 Jan-Feb;23:18–29. [PubMed] [Google Scholar]
- Massey V., Ganther H. On the interpretation of the absorption spectra of flavoproteins with special reference to D-amino acid oxidase. Biochemistry. 1965 Jun;4(6):1161–1173. doi: 10.1021/bi00882a027. [DOI] [PubMed] [Google Scholar]
- Massey V., Hemmerich P. Active-site probes of flavoproteins. Biochem Soc Trans. 1980 Jun;8(3):246–257. doi: 10.1042/bst0080246. [DOI] [PubMed] [Google Scholar]
- Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
- Moore E. G., Ghisla S., Massey V. Properties of flavins where the 8-methyl group is replaced by mercapto- residues. J Biol Chem. 1979 Sep 10;254(17):8173–8178. [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- Pilone Simonetta M., Pollegioni L., Casalin P., Curti B., Ronchi S. Properties of D-amino-acid oxidase from Rhodotorula gracilis. Eur J Biochem. 1989 Mar 1;180(1):199–204. doi: 10.1111/j.1432-1033.1989.tb14634.x. [DOI] [PubMed] [Google Scholar]
- Pollegioni L., Falbo A., Pilone M. S. Specificity and kinetics of Rhodotorula gracilis D-amino acid oxidase. Biochim Biophys Acta. 1992 Mar 27;1120(1):11–16. doi: 10.1016/0167-4838(92)90418-d. [DOI] [PubMed] [Google Scholar]
- Pollegioni L., Ghisla S., Pilone M. S. Studies on the active centre of Rhodotorula gracilis D-amino acid oxidase and comparison with pig kidney enzyme. Biochem J. 1992 Sep 1;286(Pt 2):389–394. doi: 10.1042/bj2860389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollegioni L., Langkau B., Tischer W., Ghisla S., Pilone M. S. Kinetic mechanism of D-amino acid oxidases from Rhodotorula gracilis and Trigonopsis variabilis. J Biol Chem. 1993 Jul 5;268(19):13850–13857. [PubMed] [Google Scholar]
- Pollegioni L., Pilone M. S. Purification of Rhodotorula gracilis D-amino acid oxidase. Protein Expr Purif. 1992 Apr;3(2):165–167. [PubMed] [Google Scholar]
- RAY W. J., Jr, KOSHLAND D. E., Jr A method for characterizing the type and numbers of groups involved in enzyme action. J Biol Chem. 1961 Jul;236:1973–1979. [PubMed] [Google Scholar]
- Ronchi S., Minchiotti L., Galliano M., Curti B., Swenson R. P., Williams C. H., Jr, Massey V. The primary structure of D-amino acid oxidase from pig kidney. II. Isolation and sequence of overlap peptides and the complete sequence. J Biol Chem. 1982 Aug 10;257(15):8824–8834. [PubMed] [Google Scholar]
- Schräder T., Andreesen J. R. Evidence for the functional importance of Cys298 in D-amino acid oxidase from Trigonopsis variabilis. Eur J Biochem. 1993 Dec 1;218(2):735–744. doi: 10.1111/j.1432-1033.1993.tb18428.x. [DOI] [PubMed] [Google Scholar]
- Stinson R. A., Holbrook J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J. 1973 Apr;131(4):719–728. doi: 10.1042/bj1310719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van den Berghe-Snorek S., Stankovich M. T. Thermodynamic control of D-amino acid oxidase by benzoate binding. J Biol Chem. 1985 Mar 25;260(6):3373–3379. [PubMed] [Google Scholar]
- Watanabe F., Fukui K., Momoi K., Miyake Y. Effect of site-specific mutagenesis of tyrosine-55, methionine-110 and histidine-217 in porcine kidney D-amino acid oxidase on its catalytic function. FEBS Lett. 1988 Oct 10;238(2):269–272. doi: 10.1016/0014-5793(88)80494-0. [DOI] [PubMed] [Google Scholar]
- Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]