Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 15;310(Pt 3):827–833. doi: 10.1042/bj3100827

Pro-oxidant effects of cross-linked haemoglobins explored using liposome and cytochrome c oxidase vesicle model membranes.

M S Rogers 1, R P Patel 1, B J Reeder 1, P Sarti 1, M T Wilson 1, A I Alayash 1
PMCID: PMC1135971  PMID: 7575415

Abstract

The therapeutic use of cell-free haemoglobin as a blood substitute has been hampered by toxicological effects. A model asolectin (phosphatidylcholine/phosphatidylethanolamine) liposome system was utilized to study the pro-oxidant efficiency of several chemically modified haemoglobins on biological membranes. Lipid peroxidation, resulting from the interactions between haemoglobin and liposomes, was measured by conjugated diene formation and the maximal rates of oxygen uptake. Spectral changes gave insight into the occurrence of the ferryl iron species. The residual reactivity of oxidatively damaged haemoglobins with ligands during incubation with liposomes was assessed from rapid kinetic carbon monoxide-binding experiments. Liposomes in which cytochrome c oxidase was embedded show both haemoglobin and the enzyme to be oxidatively damaged during incubation. The functional state of cytochrome c oxidase was monitored in the presence and absence of a free radical scavenger. Once in contact, both unmodified and modified haemoglobins triggered and maintained severe radical-mediated membrane damage. Differences in the pro-oxidant activities among haemoglobins may be explained by either the differential population of their ferryl intermediates or disparate dimerization and transfer of haem into the membrane with subsequent haem degradation. This study may contribute to a better understanding of the molecular determinants of haemoglobin interactions with a variety of biological membranes.

Full text

PDF
827

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alayash A. I., Fratantoni J. C., Bonaventura C., Bonaventura J., Bucci E. Consequences of chemical modifications on the free radical reactions of human hemoglobin. Arch Biochem Biophys. 1992 Oct;298(1):114–120. doi: 10.1016/0003-9861(92)90101-2. [DOI] [PubMed] [Google Scholar]
  2. Balla J., Jacob H. S., Balla G., Nath K., Eaton J. W., Vercellotti G. M. Endothelial-cell heme uptake from heme proteins: induction of sensitization and desensitization to oxidant damage. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9285–9289. doi: 10.1073/pnas.90.20.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benesch R. E., Kwong S. The stability of the heme-globin linkage in some normal, mutant, and chemically modified hemoglobins. J Biol Chem. 1990 Sep 5;265(25):14881–14885. [PubMed] [Google Scholar]
  4. Berzofsky J. A., Peisach J., Horecker B. L. Sulfheme proteins. IV. The stoichiometry of sulfur incorporation and the isolation of sulfhemin, the prosthetic group of sulfmyoglobin. J Biol Chem. 1972 Jun 25;247(12):3783–3791. [PubMed] [Google Scholar]
  5. Bossi L., Alemà S., Calissano P., Marra E. Interaction of different forms of haemoglobin with artificial lipid membranes. Biochim Biophys Acta. 1975 Feb 14;375(3):477–482. doi: 10.1016/0005-2736(75)90364-8. [DOI] [PubMed] [Google Scholar]
  6. Brunori M., Antonini G., Malatesta F., Sarti P., Wilson M. T. Cytochrome-c oxidase. Subunit structure and proton pumping. Eur J Biochem. 1987 Nov 16;169(1):1–8. doi: 10.1111/j.1432-1033.1987.tb13572.x. [DOI] [PubMed] [Google Scholar]
  7. Brunori M., Sarti P., Colosimo A., Antonini G., Malatesta F., Jones M. G., Wilson M. T. Mechanism of control of cytochrome oxidase activity by the electrochemical-potential gradient. EMBO J. 1985 Sep;4(9):2365–2368. doi: 10.1002/j.1460-2075.1985.tb03940.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bunn H. F., Jandl J. H. The renal handling of hemoglobin. II. Catabolism. J Exp Med. 1969 May 1;129(5):925–934. doi: 10.1084/jem.129.5.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cannon J. B., Kuo F. S., Pasternack R. F., Wong N. M., Muller-Eberhard U. Kinetics of the interaction of hemin liposomes with heme binding proteins. Biochemistry. 1984 Jul 31;23(16):3715–3721. doi: 10.1021/bi00311a022. [DOI] [PubMed] [Google Scholar]
  10. Carrico R. J., Peisach J., Alben J. O. The preparation and some physical properties of sulfhemoglobin. J Biol Chem. 1978 Apr 10;253(7):2386–2391. [PubMed] [Google Scholar]
  11. Carroll R. C., Racker E. Preparation and characterization of cytochrome c oxidase vesicles with high respiratory control. J Biol Chem. 1977 Oct 25;252(20):6981–6990. [PubMed] [Google Scholar]
  12. Cashon R. E., Alayash A. I. Reaction of human hemoglobin HbA0 and two cross-linked derivatives with hydrogen peroxide: differential behavior of the ferryl intermediate. Arch Biochem Biophys. 1995 Jan 10;316(1):461–469. doi: 10.1006/abbi.1995.1061. [DOI] [PubMed] [Google Scholar]
  13. Chatterjee R., Walder R. Y., Arnone A., Walder J. A. Mechanism for the increase in solubility of deoxyhemoglobin S due to cross-linking the beta chains between lysine-82 beta 1 and lysine-82 beta 2. Biochemistry. 1982 Nov 9;21(23):5901–5909. doi: 10.1021/bi00266a027. [DOI] [PubMed] [Google Scholar]
  14. Cheddar G., Tollin G. Comparison of electron transfer kinetics between redox proteins free in solution and electrostatically complexed to a lipid bilayer membrane. Arch Biochem Biophys. 1994 May 1;310(2):392–396. doi: 10.1006/abbi.1994.1183. [DOI] [PubMed] [Google Scholar]
  15. Christensen S. M., Medina F., Winslow R. W., Snell S. M., Zegna A., Marini M. A. Preparation of human hemoglobin Ao for possible use as a blood substitute. J Biochem Biophys Methods. 1988 Oct;17(2):143–154. doi: 10.1016/0165-022x(88)90045-0. [DOI] [PubMed] [Google Scholar]
  16. Galaris D., Sevanian A., Cadenas E., Hochstein P. Ferrylmyoglobin-catalyzed linoleic acid peroxidation. Arch Biochem Biophys. 1990 Aug 15;281(1):163–169. doi: 10.1016/0003-9861(90)90427-z. [DOI] [PubMed] [Google Scholar]
  17. Hai T. T., Nelson D., Pereira D., Srnak A. Diaspirin crosslinked hemoglobin (DCLHb) polymerization. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):923–931. doi: 10.3109/10731199409117931. [DOI] [PubMed] [Google Scholar]
  18. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  19. MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
  20. Motterlini R., Macdonald V. W. Cell-free hemoglobin potentiates acetylcholine-induced coronary vasoconstriction in rabbit hearts. J Appl Physiol (1985) 1993 Nov;75(5):2224–2233. doi: 10.1152/jappl.1993.75.5.2224. [DOI] [PubMed] [Google Scholar]
  21. Olson J. S. Genetic engineering of myoglobin as a simple prototype for hemoglobin-based blood substitutes. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):429–441. doi: 10.3109/10731199409117872. [DOI] [PubMed] [Google Scholar]
  22. Osawa Y., Darbyshire J. F., Meyer C. A., Alayash A. I. Differential susceptibilities of the prosthetic heme of hemoglobin-based red cell substitutes. Implications in the design of safer agents. Biochem Pharmacol. 1993 Dec 14;46(12):2299–2305. doi: 10.1016/0006-2952(93)90621-3. [DOI] [PubMed] [Google Scholar]
  23. Paganga G., Rice-Evans C., Rule R., Leake D. The interaction between ruptured erythrocytes and low-density lipoproteins. FEBS Lett. 1992 Jun 1;303(2-3):154–158. doi: 10.1016/0014-5793(92)80508-e. [DOI] [PubMed] [Google Scholar]
  24. Panter S. S., Vandegriff K. D., Yan P. O., Regan R. F. Assessment of hemoglobin-dependent neurotoxicity: alpha-alpha crosslinked hemoglobin. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):399–413. doi: 10.3109/10731199409117870. [DOI] [PubMed] [Google Scholar]
  25. Riggs A. Preparation of blood hemoglobins of vertebrates. Methods Enzymol. 1981;76:5–29. doi: 10.1016/0076-6879(81)76111-1. [DOI] [PubMed] [Google Scholar]
  26. Rogers M. S., Ryan B. B., Cashon R. E., Alayash A. I. Effects of polymerization on the oxygen carrying and redox properties of diaspirin cross-linked hemoglobin. Biochim Biophys Acta. 1995 Apr 27;1248(2):135–142. doi: 10.1016/0167-4838(95)00017-o. [DOI] [PubMed] [Google Scholar]
  27. Sarti P., Hogg N., Darley-Usmar V. M., Sanna M. T., Wilson M. T. The oxidation of cytochrome-c oxidase vesicles by hemoglobin. Biochim Biophys Acta. 1994 Sep 21;1208(1):38–44. doi: 10.1016/0167-4838(94)90157-0. [DOI] [PubMed] [Google Scholar]
  28. Shviro Y., Zilber I., Shaklai N. The interaction of hemoglobin with phosphatidylserine vesicles. Biochim Biophys Acta. 1982 Apr 23;687(1):63–70. doi: 10.1016/0005-2736(82)90170-5. [DOI] [PubMed] [Google Scholar]
  29. Simoni J., Simoni G., Lox C. D., Feola M. Reaction of human endothelial cells to bovine hemoglobin solutions and tumor necrosis factor. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):777–787. doi: 10.3109/10731199409117911. [DOI] [PubMed] [Google Scholar]
  30. Snyder S. R., Welty E. V., Walder R. Y., Williams L. A., Walder J. A. HbXL99 alpha: a hemoglobin derivative that is cross-linked between the alpha subunits is useful as a blood substitute. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7280–7284. doi: 10.1073/pnas.84.20.7280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Szebeni J., Toth K. Lipid peroxidation in hemoglobin-containing liposomes. Effects of membrane phospholipid composition and cholesterol content. Biochim Biophys Acta. 1986 May 28;857(2):139–145. doi: 10.1016/0005-2736(86)90341-x. [DOI] [PubMed] [Google Scholar]
  32. Szebeni J., Winterbourn C. C., Carrell R. W. Oxidative interactions between haemoglobin and membrane lipid. A liposome model. Biochem J. 1984 Jun 15;220(3):685–692. doi: 10.1042/bj2200685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Takenaka K., Kassell N. F., Foley P. L., Lee K. S. Oxyhemoglobin-induced cytotoxicity and arachidonic acid release in cultured bovine endothelial cells. Stroke. 1993 Jun;24(6):839–846. doi: 10.1161/01.str.24.6.839. [DOI] [PubMed] [Google Scholar]
  34. Vandegriff K. D., Le Tellier Y. C. A comparison of rates of heme exchange: site-specifically cross-linked versus polymerized human hemoglobins. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(3):443–455. doi: 10.3109/10731199409117873. [DOI] [PubMed] [Google Scholar]
  35. Vandegriff K. D., Shrager R. I. Hemoglobin--oxygen equilibrium binding: rapid-scanning spectrophotometry and singular value decomposition. Methods Enzymol. 1994;232:460–485. doi: 10.1016/0076-6879(94)32060-8. [DOI] [PubMed] [Google Scholar]
  36. YONETANI T. Studies on cytochrome oxidase. III. Improved preparation and some properties. J Biol Chem. 1961 Jun;236:1680–1688. [PubMed] [Google Scholar]
  37. Zhang L., Levy A., Rifkind J. M. Autoxidation of hemoglobin enhanced by dissociation into dimers. J Biol Chem. 1991 Dec 25;266(36):24698–24701. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES