Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Sep 15;310(Pt 3):923–929. doi: 10.1042/bj3100923

Regulation of expression of transcobalamin II receptor in the rat.

S Bose 1, S Seetharam 1, T G Hammond 1, B Seetharam 1
PMCID: PMC1135984  PMID: 7575428

Abstract

Surface and intracellular membrane distribution and hormonal regulation of transcobalamin II receptor (TC II-R) activity and protein levels have been studied in an effort to understand its regulation of expression in the rat. TC II-R activity and the levels of the 62 kDa monomeric and 124 kDa dimeric forms of TC II-R were highest in the rat kidney and intestine, and in these tissues the receptor expression was not dependent upon the postnatal development of the rat. TC II-R expression was uniform in the various regions of the gut. Surface membrane distribution of TC II-R in the kidney revealed the expression of the 124 kDa dimer form of TC II-R in the apical and basolateral membranes in the ratio of 1:10. Further subcellular distribution of TC II-R in the kidney revealed the expression of the 124 kDa dimer in the intermicrovillar clefts and clathrin-coated vesicles and the 62 kDa monomer in the microsomes. Neither the monomer nor the dimer could be detected in the early endosomes or lysosomes. Membrane TC II-R activity and TC II-R protein levels and cobalamin (Cbl; vitamin B12) transport in vivo were inhibited by about 90% in adrenalectomized rats and all three returned to normal levels by oral treatment of these animals with cortisone acetate. In contrast, thyroidectomy or experimentally induced diabetes had no effect on TC II-R activity or Cbl transport. Based on these observations, we suggest that TC II-R expression is not developmentally or regionally regulated in rat renal and intestinal membranes and its expression in the kidney is asymmetrically distributed between the apical (10%) and basolateral (90%) membranes. In addition, our results also show that the dimerization of TC II-R is a post-microsomal event and that the expression of TC II-R and plasma Cbl transport is regulated by cortisone.

Full text

PDF
928

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amagasaki T., Green R., Jacobsen D. W. Expression of transcobalamin II receptors by human leukemia K562 and HL-60 cells. Blood. 1990 Oct 1;76(7):1380–1386. [PubMed] [Google Scholar]
  2. BOASS A., WILSON T. H. Development of mechanisms for intestinal absorption of vitamin B12 in growing rats. Am J Physiol. 1963 Jan;204:101–104. doi: 10.1152/ajplegacy.1963.204.1.101. [DOI] [PubMed] [Google Scholar]
  3. Biggs J. C., Witts L. J. Altered thyroid function in the rat. Effects on gastric secretion and vitamin B12 metabolism. Gastroenterology. 1967 Mar;52(3):494–504. [PubMed] [Google Scholar]
  4. Bose S., Seetharam S., Seetharam B. Membrane expression and interactions of human transcobalamin II receptor. J Biol Chem. 1995 Apr 7;270(14):8152–8157. doi: 10.1074/jbc.270.14.8152. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Cooper B. A., Rosenblatt D. S. Inherited defects of vitamin B12 metabolism. Annu Rev Nutr. 1987;7:291–320. doi: 10.1146/annurev.nu.07.070187.001451. [DOI] [PubMed] [Google Scholar]
  7. Dieckgraefe B. K., Seetharam B., Alpers D. H. Developmental regulation of rat intrinsic factor mRNA. Am J Physiol. 1988 Jun;254(6 Pt 1):G913–G919. doi: 10.1152/ajpgi.1988.254.6.G913. [DOI] [PubMed] [Google Scholar]
  8. Dryden L. P., Hartman A. M. Relative concentration of vitamin B12 in the organs of the male rat as affected by its intake of the vitamin. J Nutr. 1966 Dec;90(4):382–386. doi: 10.1093/jn/90.4.382. [DOI] [PubMed] [Google Scholar]
  9. Finkler A. E., Hall C. A. Nature of the relationship between vitamin B12 binding and cell uptake. Arch Biochem Biophys. 1967 Apr;120(1):79–85. doi: 10.1016/0003-9861(67)90600-5. [DOI] [PubMed] [Google Scholar]
  10. Friedman P. A., Shia M. A., Wallace J. K. A saturable high affinity binding site for transcobalamin II-vitamin B12 complexes in human placental membrane preparations. J Clin Invest. 1977 Jan;59(1):51–58. doi: 10.1172/JCI108621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HARTE R. A., CHOW B. F., BARROWS L. Storage and elimination of vitamin B12 in the rat. J Nutr. 1953 Apr;49(4):669–678. doi: 10.1093/jn/49.4.669. [DOI] [PubMed] [Google Scholar]
  12. HERBERT V., CASTLE W. B. Divalent cation and pH dependence of rat intrinsic factor action in everted sacs and mucosal homogenates of rat small intestine. J Clin Invest. 1961 Nov;40:1978–1983. doi: 10.1172/JCI104423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hammond T. G., Majewski R. R., Morré D. J., Schell K., Morrissey L. W. Forward scatter pulse width signals resolve multiple populations of endosomes. Cytometry. 1993;14(4):411–420. doi: 10.1002/cyto.990140410. [DOI] [PubMed] [Google Scholar]
  14. Hammond T. G., Majewski R. R., Muse K. E., Oberley T. D., Morrissey L. W., Amendt-Raduege A. M. Energy transfer assays of rat renal cortical endosomal fusion: evidence for superfusion. Am J Physiol. 1994 Dec;267(6 Pt 2):F1021–F1033. doi: 10.1152/ajprenal.1994.267.6.F1021. [DOI] [PubMed] [Google Scholar]
  15. Hammond T. G., Verroust P. J. Heterogeneity of endosomal populations in the rat renal cortex: light endosomes. Am J Physiol. 1994 Jun;266(6 Pt 1):C1783–C1794. doi: 10.1152/ajpcell.1994.266.6.C1783. [DOI] [PubMed] [Google Scholar]
  16. Hammond T. G., Verroust P. J., Majewski R. R., Muse K. E., Oberley T. D. Heavy endosomes isolated from the rat renal cortex show attributes of intermicrovillar clefts. Am J Physiol. 1994 Oct;267(4 Pt 2):F516–F527. doi: 10.1152/ajprenal.1994.267.4.F516. [DOI] [PubMed] [Google Scholar]
  17. Hammond T. G., Verroust P. J. Trafficking of apical proteins into clathrin-coated vesicles isolated from rat renal cortex. Am J Physiol. 1994 Apr;266(4 Pt 2):F554–F562. doi: 10.1152/ajprenal.1994.266.4.F554. [DOI] [PubMed] [Google Scholar]
  18. Kouvonen I., Gräsbeck R. Topology of the hog intrinsic factor receptor in the intestine. J Biol Chem. 1981 Jan 10;256(1):154–158. [PubMed] [Google Scholar]
  19. Levine J. S., Allen R. H., Alpers D. H., Seetharam B. Immunocytochemical localization of the intrinsic factor-cobalamin receptor in dog-ileum: distribution of intracellular receptor during cell maturation. J Cell Biol. 1984 Mar;98(3):1111–1118. doi: 10.1083/jcb.98.3.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lindemans J., Kroes A. C., van Geel J., van Kapel J., Schoester M., Abels J. Uptake of transcobalamin II-bound cobalamin by HL-60 cells: effects of differentiation induction. Exp Cell Res. 1989 Oct;184(2):449–460. doi: 10.1016/0014-4827(89)90343-1. [DOI] [PubMed] [Google Scholar]
  21. Molitoris B. A., Simon F. R. Renal cortical brush-border and basolateral membranes: cholesterol and phospholipid composition and relative turnover. J Membr Biol. 1985;83(3):207–215. doi: 10.1007/BF01868695. [DOI] [PubMed] [Google Scholar]
  22. Nexø E., Hollenberg M. D. Characterization of the particulate and soluble acceptor for transcobalamin II from human placenta and rabbit liver. Biochim Biophys Acta. 1980 Mar 3;628(2):190–200. doi: 10.1016/0304-4165(80)90366-9. [DOI] [PubMed] [Google Scholar]
  23. OKUDA K., CHOW B. F. The thyroid and absorption of vitamin B12 in rats. Endocrinology. 1961 Apr;68:607–615. doi: 10.1210/endo-68-4-607. [DOI] [PubMed] [Google Scholar]
  24. Ramanujam K. S., Seetharam S., Ramasamy M., Seetharam B. Renal brush border membrane bound intrinsic factor. Biochim Biophys Acta. 1990 Nov 30;1030(1):157–164. doi: 10.1016/0005-2736(90)90251-i. [DOI] [PubMed] [Google Scholar]
  25. Ramanujam K. S., Seetharam S., Seetharam B. Regulated expression of intrinsic factor-cobalamin receptor by rat visceral yolk sac and placental membranes. Biochim Biophys Acta. 1993 Mar 14;1146(2):243–246. doi: 10.1016/0005-2736(93)90362-4. [DOI] [PubMed] [Google Scholar]
  26. Ramasamy M., Alpers D. H., Saxena V., Seetharam B. Effect of lectins on the cobalamin-protein binding reactions: implications for the tissue uptake of cobalamin. J Nutr Biochem. 1990 Apr;1(4):213–219. doi: 10.1016/0955-2863(90)90110-7. [DOI] [PubMed] [Google Scholar]
  27. Ramasamy M., Alpers D. H., Tiruppathi C., Seetharam B. Cobalamin release from intrinsic factor and transfer to transcobalamin II within the rat enterocyte. Am J Physiol. 1989 Nov;257(5 Pt 1):G791–G797. doi: 10.1152/ajpgi.1989.257.5.G791. [DOI] [PubMed] [Google Scholar]
  28. Schohn H., Guéant J. L., Leheup B., Saunier M., Grignon G., Nicolas J. P. Intrinsic factor receptor during fetal development of the human intestine. Biochem J. 1992 Aug 15;286(Pt 1):153–156. doi: 10.1042/bj2860153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scott J. S., Bowman E. P., Cooksley W. G. A comparison of cobalamin binding by liver and kidney in rat and man. Clin Sci (Lond) 1985 Mar;68(3):357–364. doi: 10.1042/cs0680357. [DOI] [PubMed] [Google Scholar]
  30. Scott J. S., Treston A. M., Bowman E. P., Owens J. A., Cooksley W. G. The regulatory roles of liver and kidney in cobalamin (vitamin B12) metabolism in the rat: the uptake and intracellular binding of cobalamin and the activity of the cobalamin-dependent enzymes in response to varying cobalamin supply. Clin Sci (Lond) 1984 Sep;67(3):299–306. doi: 10.1042/cs0670299. [DOI] [PubMed] [Google Scholar]
  31. Seetharam B., Alpers D. H., Allen R. H. Isolation and characterization of the ileal receptor for intrinsic factor-cobalamin. J Biol Chem. 1981 Apr 25;256(8):3785–3790. [PubMed] [Google Scholar]
  32. Seetharam B., Alpers D. H. Cellular uptake of cobalamin. Nutr Rev. 1985 Apr;43(4):97–102. doi: 10.1111/j.1753-4887.1985.tb06875.x. [DOI] [PubMed] [Google Scholar]
  33. Seetharam B., Bakke J. E., Alpers D. H. Binding of intrinsic factor to ileal brush border membrane in the rat. Biochem Biophys Res Commun. 1983 Aug 30;115(1):238–244. doi: 10.1016/0006-291x(83)90995-6. [DOI] [PubMed] [Google Scholar]
  34. Seetharam B., Levine J. S., Ramasamy M., Alpers D. H. Purification, properties, and immunochemical localization of a receptor for intrinsic factor-cobalamin complex in the rat kidney. J Biol Chem. 1988 Mar 25;263(9):4443–4449. [PubMed] [Google Scholar]
  35. Seligman P. A., Allen R. H. Characterization of the receptor for transcobalamin II isolated from human placenta. J Biol Chem. 1978 Mar 25;253(6):1766–1772. [PubMed] [Google Scholar]
  36. Siurala M., Julkunen H., Lamberg B. A. Gastrointestinal tract in hyperthyroidism before and after treatment. Scand J Gastroenterol. 1966;1(2):79–85. doi: 10.1080/00365521.1966.11800616. [DOI] [PubMed] [Google Scholar]
  37. Wahlstedt V., Gräsbeck R. Cobalamin-binding proteins in human urine: identification and quantitation. J Lab Clin Med. 1985 Oct;106(4):439–446. [PubMed] [Google Scholar]
  38. Yamada S., Riittinen L., Majuri R., Fukuda M., Gräsbeck R. Studies on the transcobalamin receptor in hog kidney. Kidney Int. 1991 Feb;39(2):289–294. doi: 10.1038/ki.1991.35. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES