Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Nov 1;311(Pt 3):835–843. doi: 10.1042/bj3110835

Human dipeptidyl peptidase IV gene promoter: tissue-specific regulation from a TATA-less GC-rich sequence characteristic of a housekeeping gene promoter.

S K Böhm 1, J R Gum Jr 1, R H Erickson 1, J W Hicks 1, Y S Kim 1
PMCID: PMC1136077  PMID: 7487939

Abstract

The dipeptidyl peptidase IV gene encodes a plasma-membrane exopeptidase that is highly expressed in small intestine, lung and kidney. In order to better understand the mechanisms responsible for this tissue-specific expression we cloned, sequenced and functionally characterized the 5'-flanking region of the human dipeptidyl peptidase IV gene. The first 500 bases of the 5'-flanking sequence constituted an unmethylated CpG island, contained several Sp1-binding sites and lacked a consensus TATA box, all characteristics of gene promoters lacking tissue-specific expression. RNase-protection analysis using both small intestinal and Caco2 cell RNA indicated that the dipeptidyl peptidase IV transcript was initiated from no fewer than six major and 12 minor start sites. The 5'-flanking sequence also exhibited functional promoter activity in transient transfection experiments. Here, various lengths of the sequence were cloned upstream of a luciferase gene and introduced into cultured cells using lipofectin. A region located between bases -150 and -109 relative to the start of translation was found to be important for high-level promoter activity in both Caco2 and HepG2 cells. Moreover, Caco2 cells and HepG2 cells, which express high levels of dipeptidyl peptidase IV activity, exhibited much higher normalized luciferase activity after transfection than did 3T3, Jurkat or COS-7 cells, which have low enzyme levels. Sodium butyrate was found to increase both enzyme activity and normalized luciferase in HepG2 cells. Thus the dipeptidyl peptidase IV promoter possesses the ability to initiate transcription in a tissue-specific fashion in spite of having the sequence characteristics of a housekeeping gene promoter.

Full text

PDF
837

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott C. A., Baker E., Sutherland G. R., McCaughan G. W. Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics. 1994;40(5):331–338. doi: 10.1007/BF01246674. [DOI] [PubMed] [Google Scholar]
  2. Baeuerle P. A. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta. 1991 Apr 16;1072(1):63–80. doi: 10.1016/0304-419x(91)90007-8. [DOI] [PubMed] [Google Scholar]
  3. Baumhueter S., Mendel D. B., Conley P. B., Kuo C. J., Turk C., Graves M. K., Edwards C. A., Courtois G., Crabtree G. R. HNF-1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF. Genes Dev. 1990 Mar;4(3):372–379. doi: 10.1101/gad.4.3.372. [DOI] [PubMed] [Google Scholar]
  4. Bella A. M., Jr, Erickson R. H., Kim Y. S. Rat intestinal brush border membrane dipeptidyl-aminopeptidase IV: kinetic properties and substrate specificities of the purified enzyme. Arch Biochem Biophys. 1982 Oct 1;218(1):156–162. doi: 10.1016/0003-9861(82)90330-7. [DOI] [PubMed] [Google Scholar]
  5. Bird A. P. CpG-rich islands and the function of DNA methylation. Nature. 1986 May 15;321(6067):209–213. doi: 10.1038/321209a0. [DOI] [PubMed] [Google Scholar]
  6. Bird A. The essentials of DNA methylation. Cell. 1992 Jul 10;70(1):5–8. doi: 10.1016/0092-8674(92)90526-i. [DOI] [PubMed] [Google Scholar]
  7. Boffa L. C., Gruss R. J., Allfrey V. G. Manifold effects of sodium butyrate on nuclear function. Selective and reversible inhibition of phosphorylation of histones H1 and H2A and impaired methylation of lysine and arginine residues in nuclear protein fractions. J Biol Chem. 1981 Sep 25;256(18):9612–9621. [PubMed] [Google Scholar]
  8. Bohan C. A., Robinson R. A., Luciw P. A., Srinivasan A. Mutational analysis of sodium butyrate inducible elements in the human immunodeficiency virus type I long terminal repeat. Virology. 1989 Oct;172(2):573–583. doi: 10.1016/0042-6822(89)90200-6. [DOI] [PubMed] [Google Scholar]
  9. Borrello M. G., Pierotti M. A., Tamborini E., Biassoni D., Rizzetti M. G., Pilotti S., Della Porta G. DNA methylation of coding and non-coding regions of the human H-RAS gene in normal and tumor tissues. Oncogene. 1992 Feb;7(2):269–275. [PubMed] [Google Scholar]
  10. Brandl C. J., Martens J. A., Liaw P. C., Furlanetto A. M., Wobbe C. R. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter. J Biol Chem. 1992 Oct 15;267(29):20943–20952. [PubMed] [Google Scholar]
  11. Brasier A. R., Tate J. E., Habener J. F. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. Biotechniques. 1989 Nov-Dec;7(10):1116–1122. [PubMed] [Google Scholar]
  12. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  13. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. Promoter sequences of eukaryotic protein-coding genes. Science. 1980 Sep 19;209(4463):1406–1414. doi: 10.1126/science.6251548. [DOI] [PubMed] [Google Scholar]
  14. Darmoul D., Lacasa M., Baricault L., Marguet D., Sapin C., Trotot P., Barbat A., Trugnan G. Dipeptidyl peptidase IV (CD 26) gene expression in enterocyte-like colon cancer cell lines HT-29 and Caco-2. Cloning of the complete human coding sequence and changes of dipeptidyl peptidase IV mRNA levels during cell differentiation. J Biol Chem. 1992 Mar 5;267(7):4824–4833. [PubMed] [Google Scholar]
  15. Darmoul D., Rouyer-Fessard C., Blais A., Voisin T., Sapin C., Baricault L., Cibert C., Geraud G., Couvineau A., Laburthe M. Dipeptidyl peptidase IV expression in rat jejunal crypt-villus axis is controlled at mRNA level. Am J Physiol. 1991 Nov;261(5 Pt 1):G763–G769. doi: 10.1152/ajpgi.1991.261.5.G763. [DOI] [PubMed] [Google Scholar]
  16. Drapkin R., Merino A., Reinberg D. Regulation of RNA polymerase II transcription. Curr Opin Cell Biol. 1993 Jun;5(3):469–476. doi: 10.1016/0955-0674(93)90013-g. [DOI] [PubMed] [Google Scholar]
  17. Erickson R. H., Bella A. M., Jr, Brophy E. J., Kobata A., Kim Y. S. Purification and molecular characterization of rat intestinal brush border membrane dipeptidyl aminopeptidase IV. Biochim Biophys Acta. 1983 Apr 20;756(3):258–265. doi: 10.1016/0304-4165(83)90333-1. [DOI] [PubMed] [Google Scholar]
  18. Erickson R. H., Kim Y. S. Digestion and absorption of dietary protein. Annu Rev Med. 1990;41:133–139. doi: 10.1146/annurev.me.41.020190.001025. [DOI] [PubMed] [Google Scholar]
  19. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., Northrop J. P., Ringold G. M., Danielsen M. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7413–7417. doi: 10.1073/pnas.84.21.7413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Frohman L. A., Downs T. R., Heimer E. P., Felix A. M. Dipeptidylpeptidase IV and trypsin-like enzymatic degradation of human growth hormone-releasing hormone in plasma. J Clin Invest. 1989 May;83(5):1533–1540. doi: 10.1172/JCI114049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Frégeau C. J., Helgason C. D., Bleackley R. C. Two cytotoxic cell proteinase genes are differentially sensitive to sodium butyrate. Nucleic Acids Res. 1992 Jun 25;20(12):3113–3119. doi: 10.1093/nar/20.12.3113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gardiner-Garden M., Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987 Jul 20;196(2):261–282. doi: 10.1016/0022-2836(87)90689-9. [DOI] [PubMed] [Google Scholar]
  23. Gill R. K., Christakos S. Identification of sequence elements in mouse calbindin-D28k gene that confer 1,25-dihydroxyvitamin D3- and butyrate-inducible responses. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2984–2988. doi: 10.1073/pnas.90.7.2984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gorman C. M., Howard B. H., Reeves R. Expression of recombinant plasmids in mammalian cells is enhanced by sodium butyrate. Nucleic Acids Res. 1983 Nov 11;11(21):7631–7648. doi: 10.1093/nar/11.21.7631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gorrell M. D., Wickson J., McCaughan G. W. Expression of the rat CD26 antigen (dipeptidyl peptidase IV) on subpopulations of rat lymphocytes. Cell Immunol. 1991 Apr 15;134(1):205–215. doi: 10.1016/0008-8749(91)90343-a. [DOI] [PubMed] [Google Scholar]
  26. Grosschedl R., Birnstiel M. L. Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1432–1436. doi: 10.1073/pnas.77.3.1432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gum J. R., Byrd J. C., Hicks J. W., Toribara N. W., Lamport D. T., Kim Y. S. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem. 1989 Apr 15;264(11):6480–6487. [PubMed] [Google Scholar]
  28. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  29. Gum J. R., Jr, Hicks J. W., Toribara N. W., Siddiki B., Kim Y. S. Molecular cloning of human intestinal mucin (MUC2) cDNA. Identification of the amino terminus and overall sequence similarity to prepro-von Willebrand factor. J Biol Chem. 1994 Jan 28;269(4):2440–2446. [PubMed] [Google Scholar]
  30. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  31. Hong W. J., Petell J. K., Swank D., Sanford J., Hixson D. C., Doyle D. Expression of dipeptidyl peptidase IV in rat tissues is mainly regulated at the mRNA levels. Exp Cell Res. 1989 May;182(1):256–266. doi: 10.1016/0014-4827(89)90296-6. [DOI] [PubMed] [Google Scholar]
  32. Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  33. Kuo C. J., Conley P. B., Hsieh C. L., Francke U., Crabtree G. R. Molecular cloning, functional expression, and chromosomal localization of mouse hepatocyte nuclear factor 1. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9838–9842. doi: 10.1073/pnas.87.24.9838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  35. Lenardo M. J., Baltimore D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell. 1989 Jul 28;58(2):227–229. doi: 10.1016/0092-8674(89)90833-7. [DOI] [PubMed] [Google Scholar]
  36. Levy-Wilson B. Enhanced phosphorylation of high-mobility-group proteins in nuclease-sensitive mononucleosomes from butyrate-treated HeLa cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2189–2193. doi: 10.1073/pnas.78.4.2189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lindsay S., Bird A. P. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. 1987 May 28-Jun 3Nature. 327(6120):336–338. doi: 10.1038/327336a0. [DOI] [PubMed] [Google Scholar]
  38. Lüscher B., Eisenman R. N. New light on Myc and Myb. Part I. Myc. Genes Dev. 1990 Dec;4(12A):2025–2035. doi: 10.1101/gad.4.12a.2025. [DOI] [PubMed] [Google Scholar]
  39. Malter J. S., Gerber M. A. Regulation of hepatocyte gene expression: progress on the horizon. Hepatology. 1989 Dec;10(6):1017–1018. doi: 10.1002/hep.1840100622. [DOI] [PubMed] [Google Scholar]
  40. Marguet D., Bernard A. M., Vivier I., Darmoul D., Naquet P., Pierres M. cDNA cloning for mouse thymocyte-activating molecule. A multifunctional ecto-dipeptidyl peptidase IV (CD26) included in a subgroup of serine proteases. J Biol Chem. 1992 Feb 5;267(4):2200–2208. [PubMed] [Google Scholar]
  41. McKnight S. L., Kingsbury R. Transcriptional control signals of a eukaryotic protein-coding gene. Science. 1982 Jul 23;217(4557):316–324. doi: 10.1126/science.6283634. [DOI] [PubMed] [Google Scholar]
  42. Mendel D. B., Crabtree G. R. HNF-1, a member of a novel class of dimerizing homeodomain proteins. J Biol Chem. 1991 Jan 15;266(2):677–680. [PubMed] [Google Scholar]
  43. Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
  44. Morimoto C., Lord C. I., Zhang C., Duke-Cohan J. S., Letvin N. L., Schlossman S. F. Role of CD26/dipeptidyl peptidase IV in human immunodeficiency virus type 1 infection and apoptosis. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9960–9964. doi: 10.1073/pnas.91.21.9960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Morita A., Chung Y. C., Freeman H. J., Erickson R. H., Sleisenger M. H., Kim Y. S. Intestinal assimilation of a proline-containing tetrapeptide. Role of a brush border membrane postproline dipeptidyl aminopeptidase IV. J Clin Invest. 1983 Aug;72(2):610–616. doi: 10.1172/JCI111009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ogata S., Misumi Y., Ikehara Y. Primary structure of rat liver dipeptidyl peptidase IV deduced from its cDNA and identification of the NH2-terminal signal sequence as the membrane-anchoring domain. J Biol Chem. 1989 Feb 25;264(6):3596–3601. [PubMed] [Google Scholar]
  47. Piazza G. A., Callanan H. M., Mowery J., Hixson D. C. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. Biochem J. 1989 Aug 15;262(1):327–334. doi: 10.1042/bj2620327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Riggs M. G., Whittaker R. G., Neumann J. R., Ingram V. M. n-Butyrate causes histone modification in HeLa and Friend erythroleukaemia cells. Nature. 1977 Aug 4;268(5619):462–464. doi: 10.1038/268462a0. [DOI] [PubMed] [Google Scholar]
  49. Roy A. L., Carruthers C., Gutjahr T., Roeder R. G. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature. 1993 Sep 23;365(6444):359–361. doi: 10.1038/365359a0. [DOI] [PubMed] [Google Scholar]
  50. Schön E., Jahn S., Kiessig S. T., Demuth H. U., Neubert K., Barth A., Von Baehr R., Ansorge S. The role of dipeptidyl peptidase IV in human T lymphocyte activation. Inhibitors and antibodies against dipeptidyl peptidase IV suppress lymphocyte proliferation and immunoglobulin synthesis in vitro. Eur J Immunol. 1987 Dec;17(12):1821–1826. doi: 10.1002/eji.1830171222. [DOI] [PubMed] [Google Scholar]
  51. Sealy L., Chalkley R. The effect of sodium butyrate on histone modification. Cell. 1978 May;14(1):115–121. doi: 10.1016/0092-8674(78)90306-9. [DOI] [PubMed] [Google Scholar]
  52. Sehgal A., Patil N., Chao M. A constitutive promoter directs expression of the nerve growth factor receptor gene. Mol Cell Biol. 1988 Aug;8(8):3160–3167. doi: 10.1128/mcb.8.8.3160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Smale S. T., Baltimore D. The "initiator" as a transcription control element. Cell. 1989 Apr 7;57(1):103–113. doi: 10.1016/0092-8674(89)90176-1. [DOI] [PubMed] [Google Scholar]
  54. Suzuki Y., Erickson R. H., Sedlmayer A., Chang S. K., Ikehara Y., Kim Y. S. Dietary regulation of rat intestinal angiotensin-converting enzyme and dipeptidyl peptidase IV. Am J Physiol. 1993 Jun;264(6 Pt 1):G1153–G1159. doi: 10.1152/ajpgi.1993.264.6.G1153. [DOI] [PubMed] [Google Scholar]
  55. Tang D. C., Taylor M. W. Transcriptional activation of the adenine phosphoribosyltransferase promoter by an upstream butyrate-induced Moloney murine sarcoma virus enhancer-promoter element. J Virol. 1990 Jun;64(6):2907–2911. doi: 10.1128/jvi.64.6.2907-2911.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tiruppathi C., Miyamoto Y., Ganapathy V., Roesel R. A., Whitford G. M., Leibach F. H. Hydrolysis and transport of proline-containing peptides in renal brush-border membrane vesicles from dipeptidyl peptidase IV-positive and dipeptidyl peptidase IV-negative rat strains. J Biol Chem. 1990 Jan 25;265(3):1476–1483. [PubMed] [Google Scholar]
  57. Vidali G., Boffa L. C., Bradbury E. M., Allfrey V. G. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences. Proc Natl Acad Sci U S A. 1978 May;75(5):2239–2243. doi: 10.1073/pnas.75.5.2239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Yoganathan T., Horikoshi M., Roeder R. G., Sells B. H. Direct binding of yeast transcription factor (TFIID) to the ribosomal protein L32 (rpL32) TATA-less promoter sequence. FEBS Lett. 1993 Jul 12;326(1-3):163–166. doi: 10.1016/0014-5793(93)81783-v. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES