Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Dec 15;312(Pt 3):839–845. doi: 10.1042/bj3120839

Lactoferrin-lipopolysaccharide interaction: involvement of the 28-34 loop region of human lactoferrin in the high-affinity binding to Escherichia coli 055B5 lipopolysaccharide.

E Elass-Rochard 1, A Roseanu 1, D Legrand 1, M Trif 1, V Salmon 1, C Motas 1, J Montreuil 1, G Spik 1
PMCID: PMC1136191  PMID: 8554529

Abstract

The ability of lactoferrin (Lf), an iron-binding glycoprotein that is also called lactotransferrin, to bind lipopolysaccharide (LPS) may be relevant to some of its biological properties. A knowledge of the LPS-binding site on Lf may help to explain the mechanism of its involvement in host defence. Our report reveals the presence of two Escherichia coli 055B5 LPS-binding sites on human Lf (hLf): a high-affinity binding site (Kd 3.6 +/- 1 nM) and a low-affinity binding site (Kd 390 +/- 20 nM). Bovine Lf (bLf), which shares about 70% amino acid sequence identity with hLf, exhibits the same behaviour towards LPS. Like hLf, bLf also contains a low- and a high-affinity LPS-binding site. The Kd value (4.5 +/- 2 nM) corresponding to the high-affinity binding site is similar to that obtained for hLf. Different LPS-binding sites for human serum transferrin have been suggested, as this protein, which is known to bind bacterial endotoxin, produced only 12% inhibition of hLf-LPS interaction. Binding and competitive binding experiments performed with the N-tryptic fragment (residues 4-283), the C-tryptic fragment (residues 284-692) and the N2-glycopeptide (residues 91-255) isolated from hLf have demonstrated that the high-affinity binding site is located in the N-terminal domain I of hLf, and the low-affinity binding site is present in the C-terminal lobe. The inhibition of hLf-LPS interaction by a synthetic octadecapeptide corresponding to residues 20-37 of hLf and lactoferricin B (residues 17-41), a proteolytic fragment from bLf, revealed the importance of the 28-34 loop region of hLf and the homologous region of bLf for LPS binding. Direct evidence that this amino acid sequence is involved in the high-affinity binding to LPS was demonstrated by assays carried out with EGS-loop hLf, a recombinant hLf mutated at residues 28-34.

Full text

PDF
843

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson B. F., Baker H. M., Dodson E. J., Norris G. E., Rumball S. V., Waters J. M., Baker E. N. Structure of human lactoferrin at 3.2-A resolution. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1769–1773. doi: 10.1073/pnas.84.7.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appelmelk B. J., An Y. Q., Geerts M., Thijs B. G., de Boer H. A., MacLaren D. M., de Graaff J., Nuijens J. H. Lactoferrin is a lipid A-binding protein. Infect Immun. 1994 Jun;62(6):2628–2632. doi: 10.1128/iai.62.6.2628-2632.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnold R. R., Cole M. F., McGhee J. R. A bactericidal effect for human lactoferrin. Science. 1977 Jul 15;197(4300):263–265. doi: 10.1126/science.327545. [DOI] [PubMed] [Google Scholar]
  4. Banfield D. K., Chow B. K., Funk W. D., Robertson K. A., Umelas T. M., Woodworth R. C., MacGillivray R. T. The nucleotide sequence of rabbit liver transferrin cDNA. Biochim Biophys Acta. 1991 Jun 13;1089(2):262–265. doi: 10.1016/0167-4781(91)90021-d. [DOI] [PubMed] [Google Scholar]
  5. Bellamy W., Takase M., Yamauchi K., Wakabayashi H., Kawase K., Tomita M. Identification of the bactericidal domain of lactoferrin. Biochim Biophys Acta. 1992 May 22;1121(1-2):130–136. doi: 10.1016/0167-4838(92)90346-f. [DOI] [PubMed] [Google Scholar]
  6. Birgens H. S. The interaction of lactoferrin with human monocytes. Dan Med Bull. 1991 Jun;38(3):244–252. [PubMed] [Google Scholar]
  7. Bullen J. J. The significance of iron in infection. Rev Infect Dis. 1981 Nov-Dec;3(6):1127–1138. doi: 10.1093/clinids/3.6.1127. [DOI] [PubMed] [Google Scholar]
  8. Crouch S. P., Slater K. J., Fletcher J. Regulation of cytokine release from mononuclear cells by the iron-binding protein lactoferrin. Blood. 1992 Jul 1;80(1):235–240. [PubMed] [Google Scholar]
  9. Ellison R. T., 3rd, Giehl T. J. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991 Oct;88(4):1080–1091. doi: 10.1172/JCI115407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ellison R. T., 3rd The effects of lactoferrin on gram-negative bacteria. Adv Exp Med Biol. 1994;357:71–90. doi: 10.1007/978-1-4615-2548-6_8. [DOI] [PubMed] [Google Scholar]
  11. Gazzano-Santoro H., Parent J. B., Grinna L., Horwitz A., Parsons T., Theofan G., Elsbach P., Weiss J., Conlon P. J. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun. 1992 Nov;60(11):4754–4761. doi: 10.1128/iai.60.11.4754-4761.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones E. M., Smart A., Bloomberg G., Burgess L., Millar M. R. Lactoferricin, a new antimicrobial peptide. J Appl Bacteriol. 1994 Aug;77(2):208–214. doi: 10.1111/j.1365-2672.1994.tb03065.x. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Legrand D., Mazurier J., Aubert J. P., Loucheux-Lefebvre M. H., Montreuil J., Spik G. Evidence for interactions between the 30 kDa N- and 50 kDa C-terminal tryptic fragments of human lactotransferrin. Biochem J. 1986 Jun 15;236(3):839–844. doi: 10.1042/bj2360839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Legrand D., Mazurier J., Elass A., Rochard E., Vergoten G., Maes P., Montreuil J., Spik G. Molecular interactions between human lactotransferrin and the phytohemagglutinin-activated human lymphocyte lactotransferrin receptor lie in two loop-containing regions of the N-terminal domain I of human lactotransferrin. Biochemistry. 1992 Sep 29;31(38):9243–9251. doi: 10.1021/bi00153a018. [DOI] [PubMed] [Google Scholar]
  16. Legrand D., Mazurier J., Maes P., Rochard E., Montreuil J., Spik G. Inhibition of the specific binding of human lactotransferrin to human peripheral-blood phytohaemagglutinin-stimulated lymphocytes by fluorescein labelling and location of the binding site. Biochem J. 1991 Jun 15;276(Pt 3):733–738. doi: 10.1042/bj2760733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Legrand D., Mazurier J., Metz-Boutigue M. H., Jolles J., Jolles P., Montreuil J., Spik G. Characterization and localization of an iron-binding 18-kDa glycopeptide isolated from the N-terminal half of human lactotransferrin. Biochim Biophys Acta. 1984 May 31;787(1):90–96. doi: 10.1016/0167-4838(84)90111-0. [DOI] [PubMed] [Google Scholar]
  18. Legrand D., Salmon V., Coddeville B., Benaissa M., Plancke Y., Spik G. Structural determination of two N-linked glycans isolated from recombinant human lactoferrin expressed in BHK cells. FEBS Lett. 1995 May 22;365(1):57–60. doi: 10.1016/0014-5793(95)00441-b. [DOI] [PubMed] [Google Scholar]
  19. MONTREUIL J., MULLET S. [Isolation of lactosiderophilin from human milk]. C R Hebd Seances Acad Sci. 1960 Feb 29;250:1736–1737. [PubMed] [Google Scholar]
  20. MONTREUIL J., TONNELAT J., MULLET S. [Preparation and properties of lactosiderophilin (lactotransferrin) of human milk]. Biochim Biophys Acta. 1960 Dec 18;45:413–421. doi: 10.1016/0006-3002(60)91478-5. [DOI] [PubMed] [Google Scholar]
  21. Masson P. L., Heremans J. F., Schonne E. Lactoferrin, an iron-binding protein in neutrophilic leukocytes. J Exp Med. 1969 Sep 1;130(3):643–658. doi: 10.1084/jem.130.3.643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mathison J. C., Tobias P. S., Wolfson E., Ulevitch R. J. Plasma lipopolysaccharide (LPS)-binding protein. A key component in macrophage recognition of gram-negative LPS. J Immunol. 1992 Jul 1;149(1):200–206. [PubMed] [Google Scholar]
  23. Mazurier J., Legrand D., Hu W. L., Montreuil J., Spik G. Expression of human lactotransferrin receptors in phytohemagglutinin-stimulated human peripheral blood lymphocytes. Isolation of the receptors by antiligand-affinity chromatography. Eur J Biochem. 1989 Feb 1;179(2):481–487. doi: 10.1111/j.1432-1033.1989.tb14578.x. [DOI] [PubMed] [Google Scholar]
  24. Mazurier J., Spik G. Comparative study of the iron-binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta. 1980 May 7;629(2):399–408. doi: 10.1016/0304-4165(80)90112-9. [DOI] [PubMed] [Google Scholar]
  25. Metz-Boutigue M. H., Jollès J., Mazurier J., Schoentgen F., Legrand D., Spik G., Montreuil J., Jollès P. Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem. 1984 Dec 17;145(3):659–676. doi: 10.1111/j.1432-1033.1984.tb08607.x. [DOI] [PubMed] [Google Scholar]
  26. Miyazawa K., Mantel C., Lu L., Morrison D. C., Broxmeyer H. E. Lactoferrin-lipopolysaccharide interactions. Effect on lactoferrin binding to monocyte/macrophage-differentiated HL-60 cells. J Immunol. 1991 Jan 15;146(2):723–729. [PubMed] [Google Scholar]
  27. Palmiter R. D., Behringer R. R., Quaife C. J., Maxwell F., Maxwell I. H., Brinster R. L. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell. 1987 Jul 31;50(3):435–443. doi: 10.1016/0092-8674(87)90497-1. [DOI] [PubMed] [Google Scholar]
  28. Pierce A., Colavizza D., Benaissa M., Maes P., Tartar A., Montreuil J., Spik G. Molecular cloning and sequence analysis of bovine lactotransferrin. Eur J Biochem. 1991 Feb 26;196(1):177–184. doi: 10.1111/j.1432-1033.1991.tb15801.x. [DOI] [PubMed] [Google Scholar]
  29. Rey M. W., Woloshuk S. L., deBoer H. A., Pieper F. R. Complete nucleotide sequence of human mammary gland lactoferrin. Nucleic Acids Res. 1990 Sep 11;18(17):5288–5288. doi: 10.1093/nar/18.17.5288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rochard E., Legrand D., Mazurier J., Montreuil J., Spik G. The N-terminal domain I of human lactotransferrin binds specifically to phytohemagglutinin-stimulated peripheral blood human lymphocyte receptors. FEBS Lett. 1989 Sep 11;255(1):201–204. doi: 10.1016/0014-5793(89)81091-9. [DOI] [PubMed] [Google Scholar]
  31. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Spik G., Montreuil J. Role de la lactotransferrine dans les mécanismes moléculaires de la défense antibactérienne. Bull Eur Physiopathol Respir. 1983 Mar-Apr;19(2):123–130. [PubMed] [Google Scholar]
  33. Spik G., Strecker G., Fournet B., Bouquelet S., Montreuil J., Dorland L., van Halbeek H., Vliegenthart J. F. Primary structure of the glycans from human lactotransferrin. Eur J Biochem. 1982 Jan;121(2):413–419. doi: 10.1111/j.1432-1033.1982.tb05803.x. [DOI] [PubMed] [Google Scholar]
  34. Sánchez L., Calvo M., Brock J. H. Biological role of lactoferrin. Arch Dis Child. 1992 May;67(5):657–661. doi: 10.1136/adc.67.5.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wang D., Pabst K. M., Aida Y., Pabst M. J. Lipopolysaccharide-inactivating activity of neutrophils is due to lactoferrin. J Leukoc Biol. 1995 Jun;57(6):865–874. doi: 10.1002/jlb.57.6.865. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES