Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Dec 1;312(Pt 2):599–608. doi: 10.1042/bj3120599

Kinetic characteristics of Escherichia coli RNase H1: cleavage of various antisense oligonucleotide-RNA duplexes.

S T Crooke 1, K M Lemonidis 1, L Neilson 1, R Griffey 1, E A Lesnik 1, B P Monia 1
PMCID: PMC1136304  PMID: 8526876

Abstract

1. The effects of variations in substrates on the kinetic properties of Escherichia coli RNase H were studied using antisense oligonucleotides of various types hybridized to complementary oligoribonucleotides. The enzyme displayed minimal sequence preference, initiated cleavage through an endonucleolytic mechanism near the 3' terminus of the RNA in a DNA-RNA chimera and then was processively exonucleolytic. Phosphorothioate oligodeoxynucleotides hybridized to RNA supported cleavage more effectively than phosphodiester oligodeoxynucleotides. Oligonucleotides comprised of 2'-methoxy-, 2'-fluoro- or 2'-propoxy-nucleosides did not support RNase H1 activity. 2. The Km and Vmax. of cleavage of RNA duplexes with full phosphorothioate oligodeoxynucleotides were compared with methoxy-deoxy 'gapmers', i.e.; oligonucleotides with 2'-methoxy wings surrounding a deoxynucleotide centre. Such structural modifications resulted in substantial increases in affinity, but significant reductions in cleavage efficiency. The initial rates of cleavage increased as the deoxynucleotide gap size was increased. Multiple deoxynucleotide gaps increased the Vmax. but had little effect on Km. 3. The effects of several base modifications on the site of initial cleavage, processivity and initial rate of cleavage were also studied.

Full text

PDF
599

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ben-Artzi H., Zeelon E., Amit B., Wortzel A., Gorecki M., Panet A. RNase H activity of reverse transcriptases on substrates derived from the 5' end of retroviral genome. J Biol Chem. 1993 Aug 5;268(22):16465–16471. [PubMed] [Google Scholar]
  2. Büsen Purification, subunit structure, and serologicai analysis of calf thymus ribonuclease H I. J Biol Chem. 1980 Oct 10;255(19):9434–9443. [PubMed] [Google Scholar]
  3. Campbell A. G., Ray D. S. Functional complementation of an Escherichia coli ribonuclease H mutation by a cloned genomic fragment from the trypanosomatid Crithidia fasciculata. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9350–9354. doi: 10.1073/pnas.90.20.9350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chiang M. Y., Chan H., Zounes M. A., Freier S. M., Lima W. F., Bennett C. F. Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms. J Biol Chem. 1991 Sep 25;266(27):18162–18171. [PubMed] [Google Scholar]
  5. Eder P. S., Walder R. Y., Walder J. A. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie. 1993;75(1-2):123–126. doi: 10.1016/0300-9084(93)90033-o. [DOI] [PubMed] [Google Scholar]
  6. Eder P. S., Walder R. Y., Walder J. A. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie. 1993;75(1-2):123–126. doi: 10.1016/0300-9084(93)90033-o. [DOI] [PubMed] [Google Scholar]
  7. Furdon P. J., Dominski Z., Kole R. RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds. Nucleic Acids Res. 1989 Nov 25;17(22):9193–9204. doi: 10.1093/nar/17.22.9193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gao W. Y., Han F. S., Storm C., Egan W., Cheng Y. C. Phosphorothioate oligonucleotides are inhibitors of human DNA polymerases and RNase H: implications for antisense technology. Mol Pharmacol. 1992 Feb;41(2):223–229. [PubMed] [Google Scholar]
  9. Giles R. V., Tidd D. M. Enhanced RNase H activity with methylphosphonodiester/phosphodiester chimeric antisense oligodeoxynucleotides. Anticancer Drug Des. 1992 Feb;7(1):37–48. [PubMed] [Google Scholar]
  10. Hogrefe H. H., Hogrefe R. I., Walder R. Y., Walder J. A. Kinetic analysis of Escherichia coli RNase H using DNA-RNA-DNA/DNA substrates. J Biol Chem. 1990 Apr 5;265(10):5561–5566. [PubMed] [Google Scholar]
  11. Inoue H., Hayase Y., Iwai S., Ohtsuka E. Sequence-specific cleavage of RNA using chimeric DNA splints and RNase H. Nucleic Acids Symp Ser. 1988;(19):135–138. [PubMed] [Google Scholar]
  12. Itaya M. Isolation and characterization of a second RNase H (RNase HII) of Escherichia coli K-12 encoded by the rnhB gene. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8587–8591. doi: 10.1073/pnas.87.21.8587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itaya M., Kondo K. Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme thermophile Thermus thermophilus HB8: a thermostable RNase H can functionally replace the Escherichia coli enzyme in vivo. Nucleic Acids Res. 1991 Aug 25;19(16):4443–4449. doi: 10.1093/nar/19.16.4443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Itaya M., McKelvin D., Chatterjie S. K., Crouch R. J. Selective cloning of genes encoding RNase H from Salmonella typhimurium, Saccharomyces cerevisiae and Escherichia coli rnh mutant. Mol Gen Genet. 1991 Jul;227(3):438–445. doi: 10.1007/BF00273935. [DOI] [PubMed] [Google Scholar]
  15. Kanaya S., Itaya M. Expression, purification, and characterization of a recombinant ribonuclease H from Thermus thermophilus HB8. J Biol Chem. 1992 May 15;267(14):10184–10192. [PubMed] [Google Scholar]
  16. Kanaya S., Katsuda-Nakai C., Ikehara M. Importance of the positive charge cluster in Escherichia coli ribonuclease HI for the effective binding of the substrate. J Biol Chem. 1991 Jun 25;266(18):11621–11627. [PubMed] [Google Scholar]
  17. Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Ikehara M., Matsuzaki T., Morikawa K. Three-dimensional structure of ribonuclease H from E. coli. Nature. 1990 Sep 20;347(6290):306–309. doi: 10.1038/347306a0. [DOI] [PubMed] [Google Scholar]
  18. Katayanagi K., Miyagawa M., Matsushima M., Ishikawa M., Kanaya S., Nakamura H., Ikehara M., Matsuzaki T., Morikawa K. Structural details of ribonuclease H from Escherichia coli as refined to an atomic resolution. J Mol Biol. 1992 Feb 20;223(4):1029–1052. doi: 10.1016/0022-2836(92)90260-q. [DOI] [PubMed] [Google Scholar]
  19. Monia B. P., Lesnik E. A., Gonzalez C., Lima W. F., McGee D., Guinosso C. J., Kawasaki A. M., Cook P. D., Freier S. M. Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. J Biol Chem. 1993 Jul 5;268(19):14514–14522. [PubMed] [Google Scholar]
  20. Nakamura H., Oda Y., Iwai S., Inoue H., Ohtsuka E., Kanaya S., Kimura S., Katsuda C., Katayanagi K., Morikawa K. How does RNase H recognize a DNA.RNA hybrid? Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11535–11539. doi: 10.1073/pnas.88.24.11535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rong Y. W., Carl P. L. On the molecular weight and subunit composition of calf thymus ribonuclease H1. Biochemistry. 1990 Jan 16;29(2):383–389. doi: 10.1021/bi00454a012. [DOI] [PubMed] [Google Scholar]
  22. Schatz O., Mous J., Le Grice S. F. HIV-1 RT-associated ribonuclease H displays both endonuclease and 3'----5' exonuclease activity. EMBO J. 1990 Apr;9(4):1171–1176. doi: 10.1002/j.1460-2075.1990.tb08224.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Tanese N., Goff S. P. Domain structure of the Moloney murine leukemia virus reverse transcriptase: mutational analysis and separate expression of the DNA polymerase and RNase H activities. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1777–1781. doi: 10.1073/pnas.85.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wagner R. W., Matteucci M. D., Lewis J. G., Gutierrez A. J., Moulds C., Froehler B. C. Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. Science. 1993 Jun 4;260(5113):1510–1513. doi: 10.1126/science.7684856. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES