Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jan 15;305(Pt 2):485–490. doi: 10.1042/bj3050485

Regulation of membrane-associated tyrosine phosphatases in UMR 106.06 osteoblast-like cells.

M C Southey 1, D M Findlay 1, B E Kemp 1
PMCID: PMC1136388  PMID: 7832764

Abstract

Protein tyrosine phosphatases play an important role in cell metabolism. Three distinct protein tyrosine phosphatase activities have been identified in an osteoblast-like cell line, UMR 106.06. These activities comprised two membrane-associated phosphatases and one cytosolic phosphatase of apparent molecular mass > 153 kDa, 80 kDa and 40 kDa respectively, estimated by gel filtration. On the basis of differences in apparent molecular mass, proteolytic-digestion profiles, substrate specificities and responses to a range of extracellular influences and inhibitor molecules, the two membrane-associated tyrosine phosphatases are distinct proteins. Tyrosine phosphatase activity in UMR 106.06 cells was sensitive to cell density. Cells at confluence contained membrane protein tyrosine phosphatase with specific activity 9-fold higher than cells at medium or low cell density. This elevation in membrane tyrosine phosphatase activity was due specifically to an increase in the high-molecular-mass enzyme. This phosphatase was also responsive to extracellular matrix components. This activity was elevated in cells grown on a collagen type-I matrix independently of cell density. Membrane and cytosolic protein tyrosine phosphatases were differentially regulated by a variety of agents including phorbol 12-myristate 13-acetate, parathyroid hormone, epidermal growth factor, okadaic acid and transforming growth factor beta. These observations suggest that regulatory influences control tyrosine phosphorylation in UMR 106.06 cells including cell-cell contact, cell-matrix contact and signal transduction involving tyrosine and serine/threonine phosphorylation events.

Full text

PDF
490

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bixby J. L. Protein kinase C is involved in laminin stimulation of neurite outgrowth. Neuron. 1989 Sep;3(3):287–297. doi: 10.1016/0896-6273(89)90253-5. [DOI] [PubMed] [Google Scholar]
  2. Brautigan D. L., Bornstein P., Gallis B. Phosphotyrosyl-protein phosphatase. Specific inhibition by Zn. J Biol Chem. 1981 Jul 10;256(13):6519–6522. [PubMed] [Google Scholar]
  3. Brautigan D. L., Pinault F. M. Activation of membrane protein-tyrosine phosphatase involving cAMP- and Ca2+/phospholipid-dependent protein kinases. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6696–6700. doi: 10.1073/pnas.88.15.6696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  5. Carpenter G., King L., Jr, Cohen S. Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. J Biol Chem. 1979 Jun 10;254(11):4884–4891. [PubMed] [Google Scholar]
  6. Cassel D., Glaser L. Proteolytic cleavage of epidermal growth factor receptor. A Ca2+-dependent, sulfhydryl-sensitive proteolytic system in A431 cells. J Biol Chem. 1982 Aug 25;257(16):9845–9848. [PubMed] [Google Scholar]
  7. Fischer E. H., Charbonneau H., Tonks N. K. Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science. 1991 Jul 26;253(5018):401–406. doi: 10.1126/science.1650499. [DOI] [PubMed] [Google Scholar]
  8. Forrest S. M., Ng K. W., Findlay D. M., Michelangeli V. P., Livesey S. A., Partridge N. C., Zajac J. D., Martin T. J. Characterization of an osteoblast-like clonal cell line which responds to both parathyroid hormone and calcitonin. Calcif Tissue Int. 1985 Jan;37(1):51–56. doi: 10.1007/BF02557679. [DOI] [PubMed] [Google Scholar]
  9. Foulkes J. G., Erikson E., Erikson R. L. Separation of multiple phosphotyrosyl-and phosphoseryl-protein phosphatases from chicken brain. J Biol Chem. 1983 Jan 10;258(1):431–438. [PubMed] [Google Scholar]
  10. Gebbink M. F., Zondag G. C., Wubbolts R. W., Beijersbergen R. L., van Etten I., Moolenaar W. H. Cell-cell adhesion mediated by a receptor-like protein tyrosine phosphatase. J Biol Chem. 1993 Aug 5;268(22):16101–16104. [PubMed] [Google Scholar]
  11. Gruppuso P. A., Boylan J. M., Smiley B. L., Fallon R. J., Brautigan D. L. Hepatic protein tyrosine phosphatases in the rat. Biochem J. 1991 Mar 1;274(Pt 2):361–367. doi: 10.1042/bj2740361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guan J. L., Shalloway D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature. 1992 Aug 20;358(6388):690–692. doi: 10.1038/358690a0. [DOI] [PubMed] [Google Scholar]
  13. Hanks S. K., Calalb M. B., Harper M. C., Patel S. K. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8487–8491. doi: 10.1073/pnas.89.18.8487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. House C., Baldwin G. S., Kemp B. E. Synthetic peptide substrates for the membrane tyrosine protein kinase stimulated by epidermal growth factor. Eur J Biochem. 1984 Apr 16;140(2):363–367. doi: 10.1111/j.1432-1033.1984.tb08109.x. [DOI] [PubMed] [Google Scholar]
  15. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  16. Ikeda K., Michelangeli V. P., Martin T. J., Findlay D. M. Type I collagen substrate increases calcitonin and parathyroid hormone receptor-mediated signal transduction in UMR 106-06 osteoblast-like cells. J Cell Physiol. 1993 Jul;156(1):130–137. doi: 10.1002/jcp.1041560118. [DOI] [PubMed] [Google Scholar]
  17. Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem. 1991 Nov;47(3):236–241. doi: 10.1002/jcb.240470309. [DOI] [PubMed] [Google Scholar]
  18. Koretzky G. A., Picus J., Schultz T., Weiss A. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2037–2041. doi: 10.1073/pnas.88.6.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krueger N. X., Streuli M., Saito H. Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J. 1990 Oct;9(10):3241–3252. doi: 10.1002/j.1460-2075.1990.tb07523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Makgoba M. W., Bernard A., Sanders M. E. Cell adhesion/signalling: biology and clinical applications. Eur J Clin Invest. 1992 Jul;22(7):443–453. doi: 10.1111/j.1365-2362.1992.tb01489.x. [DOI] [PubMed] [Google Scholar]
  21. Mansbridge J. N., Knüchel R., Knapp A. M., Sutherland R. M. Importance of tyrosine phosphatases in the effects of cell-cell contact and microenvironments on EGF-stimulated tyrosine phosphorylation. J Cell Physiol. 1992 Jun;151(3):433–442. doi: 10.1002/jcp.1041510302. [DOI] [PubMed] [Google Scholar]
  22. McDonald J. A. Matrix regulation of cell shape and gene expression. Curr Opin Cell Biol. 1989 Oct;1(5):995–999. doi: 10.1016/0955-0674(89)90071-9. [DOI] [PubMed] [Google Scholar]
  23. Mustelin T., Coggeshall K. M., Altman A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6302–6306. doi: 10.1073/pnas.86.16.6302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ng K. W., Partridge N. C., Niall M., Martin T. J. Epidermal growth factor receptors in clonal lines of a rat osteogenic sarcoma and in osteoblast-rich rat bone cells. Calcif Tissue Int. 1983 May;35(3):298–303. doi: 10.1007/BF02405050. [DOI] [PubMed] [Google Scholar]
  25. Ng K. W., Partridge N. C., Niall M., Martin T. J. Stimulation of DNA synthesis by epidermal growth factor in osteoblast-like cells. Calcif Tissue Int. 1983 Jul;35(4-5):624–628. doi: 10.1007/BF02405105. [DOI] [PubMed] [Google Scholar]
  26. Ostergaard H. L., Trowbridge I. S. Negative regulation of CD45 protein tyrosine phosphatase activity by ionomycin in T cells. Science. 1991 Sep 20;253(5026):1423–1425. doi: 10.1126/science.1654595. [DOI] [PubMed] [Google Scholar]
  27. Pallen C. J., Tong P. H. Elevation of membrane tyrosine phosphatase activity in density-dependent growth-arrested fibroblasts. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6996–7000. doi: 10.1073/pnas.88.16.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Partridge N. C., Alcorn D., Michelangeli V. P., Kemp B. E., Ryan G. B., Martin T. J. Functional properties of hormonally responsive cultured normal and malignant rat osteoblastic cells. Endocrinology. 1981 Jan;108(1):213–219. doi: 10.1210/endo-108-1-213. [DOI] [PubMed] [Google Scholar]
  29. Partridge N. C., Frampton R. J., Eisman J. A., Michelangeli V. P., Elms E., Bradley T. R., Martin T. J. Receptors for 1,25(OH)2-vitamin D3 enriched in cloned osteoblast-like rat osteogenic sarcoma cells. FEBS Lett. 1980 Jun 16;115(1):139–142. doi: 10.1016/0014-5793(80)80744-7. [DOI] [PubMed] [Google Scholar]
  30. Schneider H. G., Michelangeli V. P., Frampton R. J., Grogan J. L., Ikeda K., Martin T. J., Findlay D. M. Transforming growth factor-beta modulates receptor binding of calciotropic hormones and G protein-mediated adenylate cyclase responses in osteoblast-like cells. Endocrinology. 1992 Sep;131(3):1383–1389. doi: 10.1210/endo.131.3.1324161. [DOI] [PubMed] [Google Scholar]
  31. Streuli M., Krueger N. X., Thai T., Tang M., Saito H. Distinct functional roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J. 1990 Aug;9(8):2399–2407. doi: 10.1002/j.1460-2075.1990.tb07415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thomas M. L., Barclay A. N., Gagnon J., Williams A. F. Evidence from cDNA clones that the rat leukocyte-common antigen (T200) spans the lipid bilayer and contains a cytoplasmic domain of 80,000 Mr. Cell. 1985 May;41(1):83–93. doi: 10.1016/0092-8674(85)90063-7. [DOI] [PubMed] [Google Scholar]
  33. Titus L., Marzilli L. G., Rubin J., Nanes M. S., Catherwood B. D. Rat osteoblasts and ROS 17/2.8 cells contain a similar protein tyrosine phosphatase. Bone Miner. 1993 Dec;23(3):267–284. doi: 10.1016/s0169-6009(08)80103-1. [DOI] [PubMed] [Google Scholar]
  34. Tonks N. K., Charbonneau H., Diltz C. D., Fischer E. H., Walsh K. A. Demonstration that the leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry. 1988 Nov 29;27(24):8695–8701. doi: 10.1021/bi00424a001. [DOI] [PubMed] [Google Scholar]
  35. Tonks N. K., Diltz C. D., Fischer E. H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988 May 15;263(14):6731–6737. [PubMed] [Google Scholar]
  36. Tonks N. K., Diltz C. D., Fischer E. H. Purification of the major protein-tyrosine-phosphatases of human placenta. J Biol Chem. 1988 May 15;263(14):6722–6730. [PubMed] [Google Scholar]
  37. Traianedes K., Ng K. W., Martin T. J., Findlay D. M. Cell substratum modulates responses of preosteoblasts to retinoic acid. J Cell Physiol. 1993 Nov;157(2):243–252. doi: 10.1002/jcp.1041570206. [DOI] [PubMed] [Google Scholar]
  38. Tung H. Y., Reed L. J. Identification and purification of a cytosolic phosphotyrosyl protein phosphatase from bovine spleen. Anal Biochem. 1987 Mar;161(2):412–419. doi: 10.1016/0003-2697(87)90469-6. [DOI] [PubMed] [Google Scholar]
  39. Yarden Y., Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem. 1988;57:443–478. doi: 10.1146/annurev.bi.57.070188.002303. [DOI] [PubMed] [Google Scholar]
  40. Zhou H., Hammonds R. G., Jr, Findlay D. M., Fuller P. J., Martin T. J., Ng K. W. Retinoic acid modulation of mRNA levels in malignant, nontransformed, and immortalized osteoblasts. J Bone Miner Res. 1991 Jul;6(7):767–777. doi: 10.1002/jbmr.5650060715. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES