Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2024 Aug;28(38):1–237. doi: 10.3310/MLFA4009

Clinical and cost-effectiveness of left ventricular assist devices as destination therapy for advanced heart failure: systematic review and economic evaluation.

Sophie Beese, Tuba S Avşar, Malcolm Price, David Quinn, Hoong S Lim, Janine Dretzke, Chidubem O Ogwulu, Pelham Barton, Louise Jackson, David Moore
PMCID: PMC11367304  PMID: 39189844

Abstract

BACKGROUND

Selected patients with advanced heart failure ineligible for heart transplantation could benefit from left ventricular assist device therapy as 'destination therapy'. There is evidence of the efficacy of destination therapy; however, it is not currently commissioned within the United Kingdom National Health Service due to the lack of economic evidence.

OBJECTIVE

What is the clinical and cost-effectiveness of a left ventricular assist device compared to medical management for patients with advanced heart failure ineligible for heart transplantation (destination therapy)?

METHODS

A systematic review of evidence on the clinical and cost-effectiveness of left ventricular assist devices as destination therapy was undertaken including, where feasible, a network meta-analysis to provide an indirect estimate of the relative effectiveness of currently available left ventricular assist devices compared to medical management. For the systematic reviews, data sources searched (up to 11 January 2022) were Cochrane CENTRAL, MEDLINE and EMBASE via Ovid for primary studies, and Epistemonikos and Cochrane Database of Systematic Reviews for relevant systematic reviews. Trial registers were also searched, along with data and reports from intervention-specific registries. Economic studies were identified in EconLit, CEA registry and the NHS Economic Evaluation Database (NHS EED). The searches were supplemented by checking reference lists of included studies. An economic model (Markov) was developed to estimate the cost-effectiveness of left ventricular assist devices compared to medical management from the United Kingdom National Health Service/personal social service perspective. Deterministic and probabilistic sensitivity analyses were conducted to explore uncertainties. Where possible, all analyses focused on the only currently available left ventricular assist device (HeartMate 3TM, Abbott, Chicago, IL, USA) in the United Kingdom.

RESULTS

The clinical effectiveness review included 134 studies (240 articles). There were no studies directly comparing HeartMate 3 and medical management (a randomised trial is ongoing). The currently available left ventricular assist device improves patient survival and reduces stroke rates and complications compared to earlier devices and relative to medical management. For example, survival at 24 months is 77% with the HeartMate 3 device compared to 59% with the HeartMate II (MOMENTUM 3 trial). An indirect comparison demonstrated a reduction in mortality compared to medical management [relative risk of death 0.25 (95% confidence interval 0.13 to 0.47); 24 months; this study]. The cost-effectiveness review included 5 cost analyses and 14 economic evaluations covering different generations of devices and with different perspectives. The reported incremental costs per quality-adjusted life-year gained compared to medical management were lower for later generations of devices [as low as £46,207 (2019 prices; United Kingdom perspective; time horizon at least 5 years)]. The economic evaluation used different approaches to obtain the relative effects of current left ventricular assist devices compared to medical management from the United Kingdom National Health Service/personal social service perspective. All gave similar incremental cost-effectiveness ratios of £53,496-58,244 per quality-adjusted life-year gained - lifetime horizon. Model outputs were sensitive to parameter estimates relating to medical management. The findings did not materially differ on exploratory subgroup analyses based on the severity of heart failure.

LIMITATIONS

There was no direct evidence comparing the clinical effectiveness of HeartMate 3 to medical management. Indirect comparisons made were based on limited data from heterogeneous studies regarding the severity of heart failure (Interagency Registry for Mechanically Assisted Circulatory Support score distribution) and possible for survival only. Furthermore, the cost of medical management of advanced heart failure in the United Kingdom is not clear.

CONCLUSIONS

Using cost-effectiveness criteria applied in the United Kingdom, left ventricular assist devices compared to medical management for patients with advanced heart failure ineligible for heart transplant may not be cost-effective. When available, data from the ongoing evaluation of HeartMate 3 compared to medical management can be used to update cost-effectiveness estimates. An audit of the costs of medical management in the United Kingdom is required to further decrease uncertainty in the economic evaluation.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42020158987.

FUNDING

This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: NIHR128996) and is published in full in Health Technology Assessment; Vol. 28, No. 38. See the NIHR Funding and Awards website for further award information.

Plain language summary

The majority of patients with advanced heart failure would be unsuitable for heart transplantation due to their age and comorbidities but selected patients could benefit from a left ventricular assist device. Left ventricular assist device therapy for such patients is known as ‘destination therapy’. This is a long-term therapy that involves implanting a battery-powered pump to support the patient’s heart. The purpose of this project was to collect and assess the research evidence on the effectiveness of left ventricular assist devices when used for destination therapy, and to estimate value for money compared to medical management from the United Kingdom National Health Service/personal social service perspective. This research identified that the currently available left ventricular assist device improves patient survival as well as reducing stroke rates and complications compared to earlier devices and relative to medical management. However, there is uncertainty in the evidence due to the absence of studies directly comparing the current device to medical therapy alone. An ongoing clinical trial is currently assessing this. It also means there is uncertainty about whether left ventricular assist devices could provide value for money as determined currently for the United Kingdom National Health Service.


Full text of this article can be found in Bookshelf.

References

  1. Poole-Wilson PA. Chronic heart failure: causes, pathophysiology, prognosis, clinical manifestations, investigations. Dis Heart 1989:48–57.
  2. Clegg AJ, Scott DA, Loveman E, Colquitt J, Hutchinson J, Royle P, Bryant J. The clinical and cost-effectiveness of left ventricular assist devices for end-stage heart failures: a systematic review and economic evaluation. Health Technol Assess 2005;9:1–148, iii. https://doi.org/10.3310/hta9450 doi: 10.3310/hta9450. [DOI] [PubMed]
  3. National Institute for Health and Care Excellence. Chronic Heart Failure in Adults: Diagnosis and Management. 2018. URL: www.nice.org.uk/guidance/ng106 (accessed 1 August 2022). [PubMed]
  4. Peters M, Crocker H, Dummett S, Jenkinson C, Doll H, Fitzpatrick R. Change in health status in long-term conditions over a one year period: a cohort survey using patient-reported outcome measures. Health Qual Life Outcomes 2014;12:123. https://doi.org/10.1186/s12955-014-0123-2 doi: 10.1186/s12955-014-0123-2. [DOI] [PMC free article] [PubMed]
  5. Lesman-Leegte I, Jaarsma T, Coyne JC, Hillege HL, Van Veldhuisen DJ, Sanderman R. Quality of life and depressive symptoms in the elderly: a comparison between patients with heart failure and age- and gender-matched community controls. J Card Fail 2009;15:17–23. https://doi.org/10.1016/j.cardfail.2008.09.006 doi: 10.1016/j.cardfail.2008.09.006. [DOI] [PubMed]
  6. Wolfel EE. Effects of ACE inhibitor therapy on quality of life in patients with heart failure. Pharmacotherapy 1998;18:1323–34. https://doi.org/10.1002/j.1875-9114.1998.tb03155.x [PubMed]
  7. Linde C, Leclercq C, Rex S, Garrigue S, Lavergne T, Cazeau S, et al. Long-term benefits of biventricular pacing in congestive heart failure: results from the MUltisite STimulation in cardiomyopathy (MUSTIC) study. J Am Coll Cardiol 2002;40:111–8. https://doi.org/10.1016/S0735-1097(02)01932-0 doi: 10.1016/s0735-1097(02)01932-0. [DOI] [PubMed]
  8. Curiati JA, Bocchi E, Freire JO, Arantes AC, Braga M, Garcia Y, et al. Meditation reduces sympathetic activation and improves the quality of life in elderly patients with optimally treated heart failure: a prospective randomized study. J Altern Complement Med 2005;11:465–72. https://doi.org/10.1089/acm.2005.11.465 doi: 10.1089/acm.2005.11.465. [DOI] [PubMed]
  9. Long L, Mordi IR, Bridges C, Sagar VA, Davies EJ, Coats AJS, et al. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Database Syst Rev 2019;1. https://doi.org/10.1002/14651858.CD003331.pub5 doi: 10.1002/14651858.CD003331.pub5. [DOI] [PMC free article] [PubMed]
  10. MacIver J, Ross HJ. Quality of life and left ventricular assist device support. Circulation 2012;126:866–74. https://doi.org/10.1161/CIRCULATIONAHA.111.040279 doi: 10.1161/CIRCULATIONAHA.111.040279. [DOI] [PubMed]
  11. Kosiborod M, Soto GE, Jones PG, Krumholz HM, Weintraub WS, Deedwania P, Spertus JA. Identifying heart failure patients at high risk for near-term cardiovascular events with serial health status assessments. Circulation 2007;115:1975–81. https://doi.org/10.1161/CIRCULATIONAHA.106.670901 doi: 10.1161/CIRCULATIONAHA.106.670901. [DOI] [PubMed]
  12. Hoekstra T, Jaarsma T, van Veldhuisen DJ, Hillege HL, Sanderman R, Lesman-Leegte I. Quality of life and survival in patients with heart failure. Eur J Heart Fail 2013;15:94–102. https://doi.org/10.1093/eurjhf/hfs148 doi: 10.1093/eurjhf/hfs148. [DOI] [PubMed]
  13. Chamberlain AM, McNallan SM, Dunlay SM, Spertus JA, Redfield MM, Moser DK, et al. Physical health status measures predict all-cause mortality in patients with heart failure. Circ Heart Fail 2013;6:669–75. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000291 doi: 10.1161/CIRCHEARTFAILURE.112.000291. [DOI] [PMC free article] [PubMed]
  14. Di Giulio P, Network of Nurses of GISSI-HF. Should patients perception of health status be integrated in the prognostic assessment of heart failure patients? A prospective study. Qual Life Res 2014;23:49–56. https://doi.org/10.1007/s11136-013-0468-8 doi: 10.1007/s11136-013-0468-8. [DOI] [PubMed]
  15. Wu JR, Lennie TA, Frazier SK, Moser DK. Health-related quality of life, functional status, and cardiac event-free survival in patients with heart failure. J Cardiovasc Nurs 2016;31:236–44. https://doi.org/10.1097/jcn.0000000000000248 doi: 10.1097/JCN.0000000000000248. [DOI] [PMC free article] [PubMed]
  16. Blecker S, Paul M, Taksler G, Ogedegbe G, Katz S. Heart failure–associated hospitalizations in the United States. J Am Coll Cardiol 2013;61:1259–67. https://doi.org/10.1016/j.jacc.2012.12.038 doi: 10.1016/j.jacc.2012.12.038. [DOI] [PMC free article] [PubMed]
  17. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017;3:7–11. https://doi.org/10.15420/cfr.2016:25:2 doi: 10.15420/cfr.2016:25:2. [DOI] [PMC free article] [PubMed]
  18. Bragazzi NL, Zhong W, Shu J, Abu Much A, Lotan D, Grupper A, et al. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol 2021;28:1682–90. https://doi.org/10.1093/eurjpc/zwaa147 doi: 10.1093/eurjpc/zwaa147. [DOI] [PubMed]
  19. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, et al., Authors/Task Force Members. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;18:891–975. https://doi.org/10.1002/ejhf.592 doi: 10.1002/ejhf.592. [DOI] [PubMed]
  20. British Heart Foundation. National Audit of Cardiac Rehabilitation (NACR) Quality and Outcomes Report. 2020. URL: www.bhf.org.uk/informationsupport/publications/statistics/national-audit-of-cardiac-rehabilitation-quality-and-outcomes-report-2020 (accessed 1 August 2022).
  21. McMurray JJV, Stewart S. The burden of heart failure. Eur Heart J Suppl 2002;4:D50–8. https://doi.org/10.1016/S1520-765X(02)90160-4
  22. National Institute for Cardiovascular Outcomes Research. National Heart Failure Audit 2020/21 Summary Report. Healthcare Quality Improvement Partnership (HQIP): London; 2021.
  23. Seferović PM, Vardas P, Jankowska EA, Maggioni AP, Timmis A, Milinković I, et al., National Heart Failure Societies of the ESC member countries (see Appendix). The Heart Failure Association Atlas: heart failure epidemiology and management statistics 2019. Eur J Heart Fail 2021;23:906–14. https://doi.org/10.1002/ejhf.2143 doi: 10.1002/ejhf.2143. [DOI] [PubMed]
  24. Dunlay SM, Roger VL, Killian JM, Weston SA, Schulte PJ, Subramaniam AV, et al. Advanced heart failure epidemiology and outcomes: a population-based study. JACC Heart Fail 2021;9:722–32. https://doi.org/10.1016/j.jchf.2021.05.009 doi: 10.1016/j.jchf.2021.05.009. [DOI] [PMC free article] [PubMed]
  25. Cowie MR, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA, Suresh V, Sutton GC. Incidence and aetiology of heart failure; a population-based study. Eur Heart J 1999;20:421–8. https://doi.org/10.1053/euhj.1998.1280 doi: 10.1053/euhj.1998.1280. [DOI] [PubMed]
  26. Mant J, Al-Mohammad A, Swain S, Laramée P, Guideline Development Group. Management of chronic heart failure in adults: synopsis of the National Institute for Health and clinical excellence guideline. Ann Intern Med 2011;155:252–9. https://doi.org/10.7326/0003-4819-155-4-201108160-00009 doi: 10.7326/0003-4819-155-4-201108160-00009. [DOI] [PubMed]
  27. Metra M, Ponikowski P, Dickstein K, McMurray JJV, Gavazzi A, Bergh C-H, et al., Heart Failure Association of the European Society of Cardiology. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2007;9:684–94. https://doi.org/10.1016/j.ejheart.2007.04.003 doi: 10.1016/j.ejheart.2007.04.003. [DOI] [PubMed]
  28. Dunlay SM, Shah ND, Shi Q, Morlan B, VanHouten H, Long KH, Roger VL. Lifetime costs of medical care after heart failure diagnosis. Circ Cardiovasc Qual Outcomes 2011;4:68–75. https://doi.org/10.1161/circoutcomes.110.957225 doi: 10.1161/CIRCOUTCOMES.110.957225. [DOI] [PMC free article] [PubMed]
  29. Lesyuk W, Kriza C, Kolominsky-Rabas P. Cost-of-illness studies in heart failure: a systematic review 2004–2016. BMC Cardiovasc Disord 2018;18:74. https://doi.org/10.1186/s12872-018-0815-3 doi: 10.1186/s12872-018-0815-3. [DOI] [PMC free article] [PubMed]
  30. National Health Service Blood and Transplant. Annual Report on Cardiothoracic Organ Transplantation. 2021. URL: https://nhsbtdbe.blob.core.windows.net/umbraco-assets-corp/25266/nhsbt-annual-report-on-cardiothoracic-organ-transplantation-202021.pdf (accessed 28 August 2023).
  31. Molina EJ, Shah P, Kiernan MS, Cornwell WK, Copeland H, Takeda K, et al. The society of thoracic surgeons Intermacs 2020 annual report. Ann Thorac Surg 2021;111:778–92. https://doi.org/10.1016/j.athoracsur.2020.12.038 doi: 10.1016/j.athoracsur.2020.12.038. [DOI] [PubMed]
  32. Medtronic Mechanical Circulatory Support. FDA Alerts Health Care Providers to Stop New Implants of Certain Ventricular Assist Device System. 2021. URL: www.fda.gov/news-events/press-announcements/fda-alerts-health-care-providers-stop-new-implants-certain-ventricular-assist-device-system (accessed 3 June 2021).
  33. Mehra MR, Crandall DL, Gustafsson F, Jorde UP, Katz JN, Netuka I, et al. Aspirin and left ventricular assist devices: rationale and design for the international randomized, placebo‐controlled, non-inferiority ARIES HM3 trial. Eur J Heart Fail 2021;23:1226–37. https://doi.org/10.1002/ejhf.2275 doi: 10.1002/ejhf.2275. [DOI] [PMC free article] [PubMed]
  34. Lim HS, Howell N, Ranasinghe A. The physiology of continuous-flow left ventricular assist devices. J Card Fail 2017;23:169–80. https://doi.org/10.1016/j.cardfail.2016.10.015 doi: 10.1016/j.cardfail.2016.10.015. [DOI] [PubMed]
  35. Saeed O, Colombo PC, Mehra MR, Uriel N, Goldstein DJ, Cleveland J, et al. Effect of aspirin dose on hemocompatibility-related outcomes with a magnetically levitated left ventricular assist device: an analysis from the MOMENTUM 3 study. J Heart Lung Transplant 2020;39:518–25. https://doi.org/10.1016/j.healun.2020.03.001 doi: 10.1016/j.healun.2020.03.001. [DOI] [PMC free article] [PubMed]
  36. Frankfurter C, Molinero M, Vishram-Nielsen JK, Foroutan F, Mak S, Rao V, et al. Predicting the risk of right ventricular failure in patients undergoing left ventricular assist device implantation: a systematic review. Circ Heart Fail 2020;13:e006994. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006994 doi: 10.1161/CIRCHEARTFAILURE.120.006994. [DOI] [PubMed]
  37. Kiernan MS, Grandin EW, Brinkley M, Jr, Kapur NK, Pham DT, Ruthazer R, et al. Early right ventricular assist device use in patients undergoing continuous-flow left ventricular assist device implantation: incidence and risk factors from the Interagency Registry for Mechanically Assisted Circulatory Support. Circ Heart Fail 2017;10:e003863. https://doi.org/10.1161/circheartfailure.117.003863 doi: 10.1161/CIRCHEARTFAILURE.117.003863. [DOI] [PMC free article] [PubMed]
  38. Truby LK, Garan AR, Givens RC, Wayda B, Takeda K, Yuzefpolskaya M, et al. Aortic insufficiency during contemporary left ventricular assist device support: analysis of the INTERMACS registry. JACC Heart Fail 2018;6:951–60. https://doi.org/10.1016/j.jchf.2018.07.012 doi: 10.1016/j.jchf.2018.07.012. [DOI] [PMC free article] [PubMed]
  39. O’Horo JC, Saleh OMA, Stulak JM, Wilhelm MP, Baddour LM, Sohail MR. Left ventricular assist device infections: a systematic review. ASAIO J 2018;64:287. https://doi.org/10.1097/MAT.0000000000000684 doi: 10.1097/MAT.0000000000000684. [DOI] [PMC free article] [PubMed]
  40. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed]
  41. Sophie Beese DMPBMPSLDQJD. Clinical and cost effectiveness of left ventricular assist devices as destination therapy for advanced heart failure. doi: 10.3310/MLFA4009. [DOI] [PMC free article] [PubMed]
  42. The EndNote Team. EndNote. In EndNote X9 ed. Philadelphia, PA: Clarivate; 2013.
  43. Veritas Health Innovation. Covidence Systematic Review Software. Melbourne: Veritas Health Innovation.
  44. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366. https://doi.org/10.1136/bmj.l4898 doi: 10.1136/bmj.l4898. [DOI] [PubMed]
  45. Bucher HC, Guyatt GH, Griffith LE, Walter SD. The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 1997;50:683–91. https://doi.org/10.1016/s0895-4356(97)00049-8 doi: 10.1016/s0895-4356(97)00049-8. [DOI] [PubMed]
  46. Teuteberg JJ, Cleveland JC, Jr, Cowger J, Higgins RS, Goldstein DJ, Keebler M, et al. The Society of Thoracic Surgeons Intermacs 2019 annual report: the changing landscape of devices and indications. Ann Thorac Surg 2020;109:649–60. https://doi.org/10.1016/j.athoracsur.2019.12.005 doi: 10.1016/j.athoracsur.2019.12.005. [DOI] [PubMed]
  47. NCT, Evaheart Inc. Prospective Multi-center Randomized Study for Evaluating the EVAHEART®2 Left Ventricular Assist System. 2010. https://classic.clinicaltrials.gov/ct2/show/ NCT01187368 (accessed September 2020).
  48. Karason K, Lund LH, Dalen M, Bjorklund E, Grinnemo K, Braun O, et al., SweVAD Investigators. Randomized trial of a left ventricular assist device as destination therapy versus guideline-directed medical therapy in patients with advanced heart failure. Rationale and design of the SWEdish evaluation of left Ventricular Assist Device (SweVAD) trial. Eur J Heart Fail 2020;22:739–50. https://doi.org/10.1002/ejhf.1773 doi: 10.1002/ejhf.1773. [DOI] [PubMed]
  49. NCT. Swedish Evaluation of Left Ventricular Assist Device as Permanent Treatment in End-stage Heart Failure. 2015. URL: https://clinicaltrials.gov/study/ NCT02592499 (accessed May 2021).
  50. Grady KL, Andrei A, Pollan L, Shi H, Adam H, Kao A, et al. Sustaining quality of life of the aged: heart transplant or mechanical support (SUSTAIN-IT): baseline findings. J Heart Lung Transplant 2018;37(4 Suppl. 1):S42. https://doi.org/10.1016/j.healun.2018.01.085
  51. NCT, Hospices Civils de Lyon Y. LVAD versus GDMT in Ambulatory Advanced Heart Failure Patients. 2021.
  52. NCT, Jarvik Heart IY. Evaluation of the Jarvik 2000 Left Centricular Assist System with Post-auricular Connector–Destination Therapy Study. 2012.
  53. Consolo F, Sferrazza G, Motolone G, Contri R, Valerio L, Lembo R, et al. Platelet activation is a preoperative risk factor for the development of thromboembolic complications in patients with continuous-flow left ventricular assist device. Eur J Heart Fail 2018;20:792–800. https://doi.org/10.1002/ejhf.1113 doi: 10.1002/ejhf.1113. [DOI] [PubMed]
  54. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al., Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) Study Group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 2001;345:1435–43. https://doi.org/10.1056/NEJMoa012175 doi: 10.1056/NEJMoa012175. [DOI] [PubMed]
  55. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al., HeartMate II Investigators. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 2009;361:2241–51. https://doi.org/10.1056/NEJMoa0909938 doi: 10.1056/NEJMoa0909938. [DOI] [PubMed]
  56. Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 2017;376:451–60. https://doi.org/10.1056/NEJMoa1602954 doi: 10.1056/NEJMoa1602954. [DOI] [PubMed]
  57. Milano CA, Rogers JG, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, et al., ENDURANCE Investigators. HVAD: the ENDURANCE supplemental trial. JACC Heart Fail 2018;6:792–802. https://doi.org/10.1016/j.jchf.2018.05.012 doi: 10.1016/j.jchf.2018.05.012. [DOI] [PubMed]
  58. Goldstein DJ, Naka Y, Horstmanshof D, Ravichandran AK, Schroder J, Ransom J, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the multicenter study of MagLev Technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol 2019;5:411. https://doi.org/10.1001/jamacardio.2019.5323 doi: 10.1001/jamacardio.2019.5323. [DOI] [PMC free article] [PubMed]
  59. Acharya D, Loyaga-Rendon R, Morgan CJ, Sands KA, Pamboukian SV, Rajapreyar I, et al. INTERMACS analysis of stroke during support with continuous-flow left ventricular assist devices: risk factors and outcomes. JACC Heart Fail 2017;5:703–11. https://doi.org/10.1016/j.jchf.2017.06.014 doi: 10.1016/j.jchf.2017.06.014. [DOI] [PMC free article] [PubMed]
  60. Aleksova N, Alba AC, Fan CPS, Amin F, Kiamanesh O, McGuinty C, et al. The effect of age on outcomes after destination-therapy left ventricular assist device implantation: an analysis of the IMACS registry. Can J Cardiol 2021;37:467–75. https://doi.org/10.1016/j.cjca.2020.06.010 doi: 10.1016/j.cjca.2020.06.010. [DOI] [PubMed]
  61. Arnold SV, Jones PG, Allen LA, Cohen DJ, Fendler TJ, Holtz JE, et al. Frequency of poor outcome (death or poor quality of life) after left ventricular assist device for destination therapy: results from the INTERMACS registry. Circ Heart Fail 2016;9:08. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002800 doi: 10.1161/CIRCHEARTFAILURE.115.002800. [DOI] [PMC free article] [PubMed]
  62. Brinkley DM, DeNofrio D, Ruthazer R, Vest AR, Kapur NK, Couper GS, Kiernan MS. Outcomes after continuous-flow left ventricular assist device implantation as destination therapy at transplant versus nontransplant centers. Circ Heart Fail 2018;11:e004384. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004384 doi: 10.1161/CIRCHEARTFAILURE.117.004384. [DOI] [PubMed]
  63. Feltrin G, Pappalardo F, Gerosa G, Russo CF, Rinaldi M, Maccherini M, et al. Destination therapy in a single uropean country insights from the ITAMACS registry. J Heart Lung Transplant 2016;35(1):S149–50.
  64. Goldstein DJ, Meyns B, Xie R, Cowger J, Pettit S, Nakatani T, et al. Third annual report from the ISHLT Mechanically Assisted Circulatory Support registry: a comparison of centrifugal and axial continuous-flow left ventricular assist devices. J Heart Lung Transplant 2019;38:352–63. https://doi.org/10.1016/j.healun.2019.02.004 doi: 10.1016/j.healun.2019.02.004. [DOI] [PubMed]
  65. Grady KL, Naftel DC, Myers S, Dew MA, Weidner G, Spertus JA, et al. Change in health-related quality of life from before to after destination therapy mechanical circulatory support is similar for older and younger patients: analyses from INTERMACS. J Heart Lung Transplant 2015;34:213–21. https://doi.org/10.1016/j.healun.2014.10.001 doi: 10.1016/j.healun.2014.10.001. [DOI] [PMC free article] [PubMed]
  66. Kanwar MK, McIlvennan CK, Lohmueller LC, Bailey SH, Rogers JG, Teuteberg J, Cowger J. Defining optimal outcomes in patients with left ventricular assist devices. ASAIO J 2021;67:397–404. https://doi.org/10.1097/MAT.0000000000001228 doi: 10.1097/MAT.0000000000001228. [DOI] [PubMed]
  67. Kirklin JK, Cantor R, Mohacsi P, Gummert J, De By T, Hannan MM, et al. First annual IMACS report: a global International Society for Heart and Lung Transplantation Registry for Mechanical Circulatory Support. J Heart Lung Transplant 2016;35:407–12. https://doi.org/10.1016/j.healun.2016.01.002 doi: 10.1016/j.healun.2016.01.002. [DOI] [PubMed]
  68. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Third INTERMACS annual report: the evolution of destination therapy in the United States. J Heart Lung Transplant 2011;30:115–23. https://doi.org/10.1016/j.healun.2010.12.001 doi: 10.1016/j.healun.2010.12.001. [DOI] [PubMed]
  69. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson L, Miller M, Young JB. Long-term mechanical circulatory support (destination therapy): on track to compete with heart transplantation? J Thorac Cardiovasc Surg 2012;144:584–603; discussion 597. https://doi.org/10.1016/j.jtcvs.2012.05.044 doi: 10.1016/j.jtcvs.2012.05.044. [DOI] [PMC free article] [PubMed]
  70. Kirklin JK, Xie R, Cowger J, de By T, Nakatani T, Schueler S, et al. Second annual report from the ISHLT Mechanically Assisted Circulatory Support Registry. J Heart Lung Transplant 2018;37:685–91. https://doi.org/10.1016/j.healun.2018.01.1294 doi: 10.1016/j.healun.2018.01.1294. [DOI] [PubMed]
  71. Lala A, Rowland J, Gelijns A, Bagiella E, Moskowitz A, Ferket B, et al. Does indication for LVAD at time of implant matter in younger patients? J Heart Lung Transplant 2019;38(4 Suppl.):S124. https://doi.org/10.1016/j.healun.2019.01.292
  72. Lala A, Rowland JC, Ferket BS, Gelijns AC, Bagiella E, Pinney SP, et al. Strategies of wait-listing for heart transplant vs durable mechanical circulatory support alone for patients with advanced heart failure. JAMA Cardiol 2020;5:652. https://doi.org/10.1001/jamacardio.2020.0631 doi: 10.1001/jamacardio.2020.0631. [DOI] [PMC free article] [PubMed]
  73. Song HK, Gelow JM, Mudd J, Chien C, Tibayan FA, Hollifield K, et al. Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation. Ann Thorac Surg 2016;101:2168–74. https://doi.org/10.1016/j.athoracsur.2016.03.040 doi: 10.1016/j.athoracsur.2016.03.040. [DOI] [PMC free article] [PubMed]
  74. Symalla T, Peev MP, Song T, Naftel D, Myers S, Koehl D, et al. STS INTERMACS database: the key to conduct single-arm trials in advanced heart failure patients. Ann Thorac Surg 2022;113:808–15. https://doi.org/10.1016/j.athoracsur.2021.04.045 doi: 10.1016/j.athoracsur.2021.04.045. [DOI] [PubMed]
  75. White-Williams C, Fazeli P, Kirklin JK, Pamboukian SV, Grady KL. Health-related quality of life differs by pre-operative implant strategy from before through mid-term after surgery: findings from INTERMACS. J Heart Lung Transplant 2020;39(4 Suppl.):S208. https://doi.org/10.1016/j.healun.2020.01.826
  76. Kalampokas N, Erbel-Khurtsidze S, Sipahi F, Rellecke P, Tudorache I, Boeken U, et al. Periprocedural outcome after left ventricular assist device implantation in septuagenarians. Thoracic and Cardiovascular Surgeon Conference: 50th Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, DGTHG 2021;69:S01.
  77. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Myers S, Acker MA, et al. Pump thrombosis in the Thoratec HeartMate II device: an update analysis of the INTERMACS registry. J Heart Lung Transplant 2015;34:1515–26. https://doi.org/10.1016/j.healun.2015.10.024 doi: 10.1016/j.healun.2015.10.024. [DOI] [PubMed]
  78. Goldstein DJ, Naftel D, Holman W, Bellumkonda L, Pamboukian SV, Pagani FD, Kirklin J. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant 2012;31:1151–7. https://doi.org/10.1016/j.healun.2012.05.004 doi: 10.1016/j.healun.2012.05.004. [DOI] [PubMed]
  79. Jaiswal A, Myers L, Topkara VK, Colombo PC, Baran D, Le Jemtel TH. Clinical outcomes of adults with elevated body mass index with destination therapy: an analysis of INTERMACS registry. J Heart Lung Transplant 2017;36(4 Suppl. 1):S182. https://doi.org/10.1016/j.healun.2017.01.478
  80. Michelis KC, Zhong L, Peltz M, Pandey A, Tang WHW, Rohatgi A, et al. Dynamic forecasts of survival for patients living with destination left ventricular assist devices: insights from INTERMACS. J Am Heart Assoc 2020;9:e016203. https://doi.org/10.1161/JAHA.119.016203 doi: 10.1161/JAHA.119.016203. [DOI] [PMC free article] [PubMed]
  81. Adlbrecht C, Hüelsmann M, Wurm R, Eskandary F, Neuhold S, Zimpfer D, et al. Outcome of conservative management vs. assist device implantation in patients with advanced refractory heart failure. Eur J Clin Invest 2016;46(1):34–41. https://doi.org/10.1111/eci.12562 doi: 10.1111/eci.12562. [DOI] [PubMed]
  82. Medressova A, Pya Y, Bekbossynov S, Andossova S, Dzhetybayeva S, Bekbossynova M, et al. Left ventricular assist devices as destination therapy. ASAIO J 2019;65(Suppl. 1):51.
  83. Galand V, Flecher E, Chabanne C, Lelong B, Goeminne C, Vincentelli A, et al. Septuagenarian population has similar survival and outcomes to younger patients after left ventricular assist device implantation. Arch Cardiovasc Dis 2020;113:701–9. https://doi.org/10.1016/j.acvd.2020.05.018 doi: 10.1016/j.acvd.2020.05.018. [DOI] [PubMed]
  84. Janssen E, van Rein N, van der Meer F, Beeres S, Jukema J, Tops L. Absolute risk of death is lower in left ventricular assist device patients with good anticoagulation control. J Heart Lung Transplant 2021;40(4 Suppl.):S387. https://doi.org/10.1016/j.healun.2021.01.1087
  85. Akay MH, Nathan SS, Radovancevic R, Poglajen G, Jezovnik MK, Candelaria IN, et al. Obesity is associated with driveline infection of left ventricular assist devices. ASAIO J 2019;65:678–82. https://doi.org/10.1097/MAT.0000000000000916 doi: 10.1097/MAT.0000000000000916. [DOI] [PubMed]
  86. Grady KL, Sherri W, Naftel DC, Myers S, Gelijins A, Moskowitz A, et al. Age and gender differences and factors related to change in health-related quality of life from before to 6 months after left ventricular assist device implantation: findings from Interagency Registry for Mechanically Assisted Circulatory Support. J Heart Lung Transplant 2016;35:777–88. https://doi.org/10.1016/j.healun.2016.01.1222 doi: 10.1016/j.healun.2016.01.1222. [DOI] [PMC free article] [PubMed]
  87. The Society of Thoracic Surgeons. STS INTERMACS Database. 2022. URL: www.uab.edu/medicine/surgery/intermacs (accessed 1 May 2021).
  88. National Heart Lung and Blood Institute. Interagency Registry for Mechanically Assisted Circulatory Support: Manual of Operations and Procedures. University of Alabama at Birmingham. 2014.
  89. National Health Service England Specialised Commissioning. Evidence Review: Mechanical Assist Devices for Circulatory Support (Destination Therapy) in People with Advanced Heart Failure. NHS. 2017.
  90. Neyt M, Leroy R, Devos C, Van Brabandt H. Left Ventricular Assist Devices in the Treatment of End-stage Heart Failure. Health Technology Assessment (HTA) No. 264. Brussels: Belgian Health Care Knowledge Centre (KCE); 2016. https://doi.org/10.57598/R264C
  91. Health Quality Ontario. Left ventricular assist devices for destination therapy: a Health Technology Assessment. Ont Health Technol Assess Ser 2016;16:1–60. [PMC free article] [PubMed]
  92. Cavarretta E, Marullo AGM, Sciarretta S, Benedetto U, Greco E, Roever L, et al. A network meta-analysis of randomized trials and observational studies on left ventricular assist devices in adult patients with end-stage heart failure. Eur J Cardiothorac Surg 2019;55:461–7. https://doi.org/10.1093/ejcts/ezy285 doi: 10.1093/ejcts/ezy285. [DOI] [PubMed]
  93. Schmier JK, Patel JD, Leonhard MJ, Midha PA. A systematic review of cost-effectiveness analyses of left ventricular assist devices: issues and challenges. Appl Health Econ Health Policy 2019;17:35–46. https://doi.org/10.1007/s40258-018-0439-x doi: 10.1007/s40258-018-0439-x. [DOI] [PubMed]
  94. Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the Economic Evaluation of Health Care Programmes. Oxford University Press. 2005.
  95. Centre for Reviews and Dissemination. Systematic Reviews. CRD’s Guidance for Undertaking Reviews in Health Care. Layerthorpe, York: University of York: Centre for Reviews and Dissemination; 2008.
  96. Booth A, Fry-Smith A. Developing the Research Question. MD: National Information Center on Health Services and Health Care Technology. 2003. URL: www.nlm.nih.gov/archive/20060905/nichsr/ehta/ehta.html (accessed August 2021).
  97. Evers S, Goossens M, de Vet H, van Tulder M, Ament A. Criteria list for assessment of methodological quality of economic evaluations: consensus on Health Economic Criteria. Int J Technol Assess Health Care 2005;21:240–5. [PubMed]
  98. Philips Z, Ginnelly L, Sculpher M, Claxton K, Golder S, Riemsma R, et al. Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Health Technol Assess 2004;8:iii–v, ix. https://doi.org/10.3310/hta8360 doi: 10.3310/hta8360. [DOI] [PubMed]
  99. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions. 2011.
  100. Droogne W, Jacobs S, Van den Bossche K, Verhoeven J, Bostic RR, Vanhaecke J, et al. Cost of 1-year left ventricular assist device destination therapy in chronic heart failure: a comparison with heart transplantation. Acta Clin Belg 2014;69:165–70. https://doi.org/10.1179/2295333714Y.0000000017 doi: 10.1179/2295333714Y.0000000017. [DOI] [PubMed]
  101. Baras Shreibati J, Goldhaber-Fiebert JD, Banerjee D, Owens DK, Hlatky MA. Cost-effectiveness of left ventricular assist devices in ambulatory patients with advanced heart failure. JACC Heart Fail 2017;5:110–9. https://doi.org/10.1016/j.jchf.2016.09.008 doi: 10.1016/j.jchf.2016.09.008. [DOI] [PubMed]
  102. Neyt M, Van den Bruel A, Smit Y, De Jonge N, Erasmus M, Van Dijk D, Vlayen J. Cost-effectiveness of continuous-flow left ventricular assist devices. Int J Technol Assess Health Care 2013;29:254–60. https://doi.org/10.1017/S0266462313000238 doi: 10.1017/S0266462313000238. [DOI] [PubMed]
  103. Messori A, Trippoli S, Bonacchi M, Sani G. Left ventricular assist device as destination therapy: application of the payment-by-results approach for the device reimbursement. J Thorac Cardiovasc Surg 2009;138:480–5. https://doi.org/10.1016/j.jtcvs.2009.02.016 doi: 10.1016/j.jtcvs.2009.02.016. [DOI] [PubMed]
  104. Adang E, Groenewoud H, van Hees F, van der Wilt G. Introduction of Artificial and Support Heart as Destination Therapy for Patients with End-stage Heart Failure. Nijmegen: Universitair Medisch Centrum St Radboud; 2006.
  105. Conseil d’évaluation des technologies de la santé du Q, McGregor M. Implantable ventricular assist devices: should they be used in Quebec: report submitted to the Minister of Research, Science and Technology of Québec. Montréal: the Conseil. 2003. URL: http://collections.banq.qc.ca/ark:/52327/49823, https://cap.banq.qc.ca/notice?id=p::usmarcdef_0003016137 (February 2021).
  106. Chew DS, Manns B, Miller RJH, Sharma N, Exner DV. Economic evaluation of left ventricular assist devices for patients with end stage heart failure who are ineligible for cardiac transplantation. Can J Cardiol 2017;33:1283–91. https://doi.org/10.1016/j.cjca.2017.07.012 doi: 10.1016/j.cjca.2017.07.012. [DOI] [PubMed]
  107. Chimanji N, Kilic A, Hasan A, Higgins RS, Whitson BA, Kilic A. Institutional cost comparison between heart transplants and left ventricular assist device implantations. Exp Clin Transplant 2016;14:656–9. https://doi.org/10.6002/ect.2015.0213 doi: 10.6002/ect.2015.0213. [DOI] [PubMed]
  108. Clegg AJ, Scott DA, Loveman E, Colquitt J, Royle P, Bryant J. Clinical and cost-effectiveness of left ventricular assist devices as destination therapy for people with end-stage heart failure: a systematic review and economic evaluation. Int J Technol Assess Health Care 2007;23:261–8. https://doi.org/10.1017/S0266462307070353 doi: 10.1017/S0266462307070353. [DOI] [PubMed]
  109. Girling AJ, Freeman G, Gordon JP, Poole-Wilson P, Scott DA, Lilford RJ. Modeling payback from research into the efficacy of left-ventricular assist devices as destination therapy. Int J Technol Assess Health Care 2007;23:269–77. doi: 10.1017/S0266462307070365. [DOI] [PubMed]
  110. Lim HS, Shaw S, Carter AW, Jayawardana S, Mossialos E, Mehra MR. A clinical and cost-effectiveness analysis of the HeartMate 3 left ventricular assist device for transplant-ineligible patients: a United Kingdom perspective. J Heart Lung Transplant 2021;41:174–86. https://doi.org/10.1016/j.healun.2021.11.014 doi: 10.1016/j.healun.2021.11.014. [DOI] [PubMed]
  111. Long EF, Swain GW, Mangi AA. Comparative survival and cost-effectiveness of advanced therapies for end-stage heart failure. Circ Heart Fail 2014;7:470–8. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000807 doi: 10.1161/CIRCHEARTFAILURE.113.000807. [DOI] [PubMed]
  112. Mehra MR, Salerno C, Cleveland JC, Pinney S, Yuzefpolskaya M, Milano CA, et al. Healthcare resource use and cost implications in the MOMENTUM 3 long-term outcome study. Circulation 2018;138:1923–34. https://doi.org/10.1161/CIRCULATIONAHA.118.035722 doi: 10.1161/CIRCULATIONAHA.118.035722. [DOI] [PubMed]
  113. Oz MC, Gelijns AC, Miller L, Wang C, Nickens P, Arons R, et al. Left ventricular assist devices as permanent heart failure therapy: the price of progress. Ann Surg 2003;238:577–83; discussion 583. https://doi.org/10.1097/01.sla.0000090447.73384.ad doi: 10.1097/01.sla.0000090447.73384.ad. [DOI] [PMC free article] [PubMed]
  114. Rogers JG, Bostic RR, Tong KB, Adamson R, Russo M, Slaughter MS. Cost-effectiveness analysis of continuous-flow left ventricular assist devices as destination therapy. Circ Heart Fail 2012;5:10–6. https://doi.org/10.1161/CIRCHEARTFAILURE.111.962951 doi: 10.1161/CIRCHEARTFAILURE.111.962951. [DOI] [PubMed]
  115. Silvestry S, Mahr C, Slaughter M, Levy W, Cheng R, May D, et al. Cost-effectiveness of a small intrapericardial centrifugal LVAD versus medical management and heart transplantation. J Heart Lung Transplant 2019;38:S132.
  116. Schueler S, Silvestry SC, Cotts WG, Slaughter MS, Levy WC, Cheng RK, et al. Cost-effectiveness of left ventricular assist devices as destination therapy in the United Kingdom. ESC Heart Fail 2021;8(4):3049–57. https://doi.org/10.1002/ehf2.13401 doi: 10.1002/ehf2.13401. [DOI] [PMC free article] [PubMed]
  117. Slaughter MS, Bostic R, Tong K, Russo M, Rogers JG. Temporal changes in hospital costs for left ventricular assist device implantation. J Card Surg 2011;26:535–41. https://doi.org/10.1111/j.1540-8191.2011.01292.x doi: 10.1111/j.1540-8191.2011.01292.x. [DOI] [PubMed]
  118. Moskowitz AJ, Weinberg AA, Oz MC, Williams DL. Quality of life with an implanted left ventricular assist device. Ann Thorac Surg 1997;64:1764–9. https://doi.org/10.1016/S0003-4975(97)01000-X doi: 10.1016/s0003-4975(97)01000-x. [DOI] [PubMed]
  119. Sharples LD, Dyer M, Cafferty F, Demiris N, Freeman C, Banner NR, et al. Cost-effectiveness of ventricular assist device use in the United Kingdom: results from the evaluation of ventricular assist device programme in the UK (EVAD-UK). J Heart Lung Transplant 2006;25:1336–43. https://doi.org/10.1016/j.healun.2006.09.011 doi: 10.1016/j.healun.2006.09.011. [DOI] [PubMed]
  120. Clegg AJ, Scott DA, Loveman E, Colquitt JL, Royle P, Bryant J. Clinical and cost-effectiveness of left ventricular assist devices as a bridge to heart transplantation for people with end-stage heart failure: a systematic review and economic evaluation. Eur Heart J 2007;27:2929–38. https://doi.org/10.1093/eurheartj/ehi857 doi: 10.1093/eurheartj/ehi857. [DOI] [PubMed]
  121. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al., ISPOR Health Economic Evaluation Publication Guidelines – CHEERS Good Reporting Practices Task Force. Consolidated Health Economic Evaluation Reporting Standards (CHEERS) – explanation and elaboration: a report of the ISPOR Health Economic Evaluation Publication Guidelines Good Reporting Practices Task Force. Value Health 2013;16:231–50. https://doi.org/10.1016/j.jval.2013.02.002 doi: 10.1016/j.jval.2013.02.002. [DOI] [PubMed]
  122. National Institute for Health and Care Excellence. NICE Health Technology Evaluations: The Manual. 2022. URL: www.nice.org.uk/process/pmg36/chapter/introduction-to-health-technology-evaluation (accessed February 2022).
  123. Briggs AH, Sculpher MJ, Claxton K. Decision Modelling for Health Economic Evaluation. Oxford: Oxford University Press. 2006.
  124. Office for National Statistics. National Life Tables – Life Expectancy in the UK: 2018 to 2020. 2021. URL: www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/lifeexpectancies/bulletins/nationallifetablesunitedkingdom/2018to2020#:~:text=Across%20the%20UK%2C%20life%20expectancy,years%20for%20females%20in%20Northern (accessed May 2021).
  125. Flack S, Taylor M, Trueman P. Cost-effectiveness of Interventions for Smoking Cessation. York: York Health Economics Consortium; 2008.
  126. Mehra MR, Cleveland JC, Jr, Uriel N, Cowger JA, Hall S, Horstmanshof D, et al., MOMENTUM 3 Investigators. Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants. Eur J Heart Fail 2021;23:1392–400. https://doi.org/10.1002/ejhf.2211 doi: 10.1002/ejhf.2211. [DOI] [PMC free article] [PubMed]
  127. Ambardekar AV, Kittleson MM, Palardy M, Mountis MM, Forde-McLean RC, DeVore AD, et al. Outcomes with ambulatory advanced heart failure from the Medical Arm of Mechanically Assisted Circulatory Support (MedaMACS) Registry. J Heart Lung Transplant 2019;38:408–17. https://doi.org/10.1016/j.healun.2018.09.021 doi: 10.1016/j.healun.2018.09.021. [DOI] [PMC free article] [PubMed]
  128. Broderick JP, Adeoye O, Elm J. Evolution of the modified Rankin Scale and its use in future stroke trials. Stroke 2017;48:2007–12. https://doi.org/10.1161/strokeaha.117.017866 doi: 10.1161/STROKEAHA.117.017866. [DOI] [PMC free article] [PubMed]
  129. Kirklin JK, Naftel DC, Myers SL, Pagani FD, Colombo PC. Quantifying the impact from stroke during support with continuous flow ventricular assist devices: an STS INTERMACS analysis. J Heart Lung Transplant 2020;39:782–94. https://doi.org/10.1016/j.healun.2020.04.006 doi: 10.1016/j.healun.2020.04.006. [DOI] [PubMed]
  130. Argiriou M, Kolokotron SM, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis 2014;6(Suppl. 1):S52–9. https://doi.org/10.3978/j.issn.2072-1439.2013.10.26 doi: 10.3978/j.issn.2072-1439.2013.10.26. [DOI] [PMC free article] [PubMed]
  131. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al., HeartMate II Clinical Investigators. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 2010;139:1316–24. https://doi.org/10.1016/j.jtcvs.2009.11.020 doi: 10.1016/j.jtcvs.2009.11.020. [DOI] [PubMed]
  132. Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, Jansz P, Hayward CS. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant 2011;30:888–95. https://doi.org/10.1016/j.healun.2011.03.006 doi: 10.1016/j.healun.2011.03.006. [DOI] [PubMed]
  133. Hatano M, Jimba T, Fujiwara T, Tsuji M, Bujo C, Ishida J, et al. Late-onset right ventricular failure after continuous-flow left ventricular assist device implantation: case presentation and review of the literature. J Cardiol 2022;80:110–5. https://doi.org/10.1016/j.jjcc.2021.12.009 doi: 10.1016/j.jjcc.2021.12.009. [DOI] [PubMed]
  134. Lo Coco V, De Piero ME, Massimi G, Chiarini G, Raffa GM, Kowalewski M, et al. Right ventricular failure after left ventricular assist device implantation: a review of the literature. J Thorac Dis 2021;13:1256–69. https://doi.org/10.21037/jtd-20-2228 doi: 10.21037/jtd-20-2228. [DOI] [PMC free article] [PubMed]
  135. Chaisinanunkul N, Adeoye O, Lewis RJ, Grotta JC, Broderick J, Jovin TG, et al., DAWN Trial and MOST Trial Steering Committees. Adopting a patient-centered approach to primary outcome analysis of acute stroke trials using a utility-weighted modified Rankin Scale. Stroke 2015;46:2238–43. https://doi.org/10.1161/strokeaha.114.008547 doi: 10.1161/STROKEAHA.114.008547. [DOI] [PMC free article] [PubMed]
  136. Freeman JV, Zhu RP, Owens DK, Garber AM, Hutton DW, Go AS, et al. Cost-effectiveness of dabigatran compared with warfarin for stroke prevention in atrial fibrillation. Ann Intern Med 2011;154:1–11. https://doi.org/10.7326/0003-4819-154-1-201101040-00289 doi: 10.7326/0003-4819-154-1-201101040-00289. [DOI] [PubMed]
  137. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J Heart Lung Transplant 2017;36:1080–6. https://doi.org/10.1016/j.healun.2017.07.005 doi: 10.1016/j.healun.2017.07.005. [DOI] [PubMed]
  138. Mark DB, Anstrom KJ, Sun JL, Clapp-Channing NE, Tsiatis AA, Davidson-Ray L, et al., Sudden Cardiac Death in Heart Failure Trial Investigators. Quality of life with defibrillator therapy or amiodarone in heart failure. N Engl J Med 2008;359:999–1008. https://doi.org/10.1056/NEJMoa0706719 doi: 10.1056/NEJMoa0706719. [DOI] [PMC free article] [PubMed]
  139. McNamara N, Narroway H, Williams M, Brookes J, Farag J, Cistulli D, et al. Contemporary outcomes of continuous-flow left ventricular assist devices – a systematic review. Ann Cardiothorac Surg 2021;10:186–208. https://doi.org/10.21037/acs-2021-cfmcs-35 doi: 10.21037/acs-2021-cfmcs-35. [DOI] [PMC free article] [PubMed]
  140. Baio G, Dawid AP. Probabilistic sensitivity analysis in health economics. Stat Methods Med Res 2015;24:615–34. https://doi.org/10.1177/0962280211419832 doi: 10.1177/0962280211419832. [DOI] [PubMed]
  141. Ren S, Minton J, Whyte S, Latimer NR, Stevenson M. A new approach for sampling ordered parameters in probabilistic sensitivity analysis. Pharmacoeconomics 2018;36:341–7. https://doi.org/10.1007/s40273-017-0584-3 doi: 10.1007/s40273-017-0584-3. [DOI] [PMC free article] [PubMed]
  142. Fenwick E, O’Brien BJ, Briggs A. Cost-effectiveness acceptability curves – facts, fallacies and frequently asked questions. Health Econ 2004;13:405–15. https://doi.org/10.1002/hec.903 doi: 10.1002/hec.903. [DOI] [PubMed]
  143. Koffijberg H, Rothery C, Chalkidou K, Grutters J. Value of information choices that influence estimates: a systematic review of prevailing considerations. Med Decis Making 2018;38:888–900. https://doi.org/10.1177/0272989x18797948 doi: 10.1177/0272989X18797948. [DOI] [PubMed]
  144. Dillon A. Carrying NICE Over the Threshold. London: National Institute for Health and Care Excellence; 2015.
  145. Grady KL, Naftel D, Stevenson L, Dew MA, Weidner G, Pagani FD, et al. Overall quality of life improves to similar levels after mechanical circulatory support regardless of severity of heart failure before implantation. J Heart Lung Transplant 2014;33:412–21. https://doi.org/10.1016/j.healun.2013.10.017 doi: 10.1016/j.healun.2013.10.017. [DOI] [PMC free article] [PubMed]
  146. Skedgel C, Henderson N, Towse A, Mott D, Green C. Considering severity in Health Technology Assessment: can we do better? Value Health 2022;25:1399–403. https://doi.org/10.1016/j.jval.2022.02.004 doi: 10.1016/j.jval.2022.02.004. [DOI] [PubMed]
  147. Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC, Jr, Colombo PC, et al., MOMENTUM 3 Investigators. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med 2017;376:440–50. https://doi.org/10.1056/NEJMoa1610426 doi: 10.1056/NEJMoa1610426. [DOI] [PubMed]
  148. Mehra MR, Goldstein DJ, Cleveland JC, Cowger JA, Hall S, Salerno C, et al. Five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA 2022;328:1233–42. https://doi.org/10.1001/jama.2022.16197 doi: 10.1001/jama.2022.16197. [DOI] [PMC free article] [PubMed]
  149. Karason K, Dellgren G, Isaksson E, Lidén H, Liljegren A, Redfors B, et al. Left ventricular assist device as permanent support in patients with end-stage heart failure. HTA-centrum: Västra Götalandsregionen. 2014.
  150. NHS Blood and Transplant. Annual Report on Ventricular Assist Devices. London: NHS Blood and Transplant; 2017.
  151. National Institute for Cardiovascular Outcomes Research. About NICOR. 2019. URL: www.nicor.org.uk/about-nicor/ (accessed November 2021).
  152. National Institute for Cardiovascular Outcomes Research. The Myocardial Ischaemia National Audit Project (MINAP). 2019. URL: https://www.nicor.org.uk/national-cardiac-audit-programme/heart-attack-audit-minap (accessed November 2021).
  153. European Registry for Patients with Mechanical Circulatory Support. About EUROMACS. 2019. URL: www.euromacs.org/about (accessed November 2021).
  154. University of Alabama at Birmingham. The STS Intermacs Database. UAB School of Medicine. 2018. URL: www.uab.edu/medicine/surgery/intermacs (accessed November 2021).
  155. The International Society for Heart and Lung Transplantation. The International Society for Heart and Lung Transplantation Registry for Mechanically Assisted Circulatory Support (IMACS). 2019. URL: https://ishlt.org/research-data/registries/international-registry-for-mechanically-assisted-c (accessed November 2021).
  156. Clarke A, Pulikottil-Jacob R, Connock M, Suri G, Kandala NB, Maheswaran H, et al. Cost-effectiveness of left ventricular assist devices (LVADs) for patients with advanced heart failure: analysis of the British NHS bridge to transplant (BTT) program. Int J Cardiol 2014;171:338–45. https://doi.org/10.1016/j.ijcard.2013.12.015 doi: 10.1016/j.ijcard.2013.12.015. [DOI] [PubMed]
  157. Goldstein DJ, Naka Y, Horstmanshof D, Ravichandran AK, Schroder J, Ransom J, et al. Association of clinical outcomes with left ventricular assist device use by bridge to transplant or destination therapy intent: the Multicenter Study of MagLev Technology in patients undergoing mechanical circulatory support therapy with HeartMate 3 (MOMENTUM 3) randomized clinical trial. JAMA Cardiol 2020;5:411–9. https://doi.org/10.1001/jamacardio.2019.5323 doi: 10.1001/jamacardio.2019.5323. [DOI] [PMC free article] [PubMed]
  158. Jalowiec A, Grady KL, White-Williams C. Predictors of rehospitalization time during the first year after heart transplant. Heart Lung 2008;37:344–55. https://doi.org/10.1016/j.hrtlng.2007.10.007 doi: 10.1016/j.hrtlng.2007.10.007. [DOI] [PMC free article] [PubMed]
  159. Starling RC, Estep JD, Horstmanshof DA, Milano CA, Stehlik J, Shah KB, et al. ROADMAP Study Investigators. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2-year results. JACC Heart Fail 2017;5:518–27. https://doi.org/10.1016/j.jchf.2017.02.016 doi: 10.1016/j.jchf.2017.02.016. [DOI] [PubMed]
  160. Tattevin P, Flécher E, Auffret V, Leclercq C, Boulé S, Vincentelli A, et al. Risk factors and prognostic impact of left ventricular assist device-associated infections. Am Heart J 2019;214:69–76. https://doi.org/10.1016/j.ahj.2019.04.021 doi: 10.1016/j.ahj.2019.04.021. [DOI] [PubMed]
  161. Luengo-Fernandez R, Walli-Attaei M, Gray A, Torbica A, Maggioni AP, Huculeci R, et al. Economic burden of cardiovascular diseases in the European Union: a population-based cost study. Eur Heart J 2023;44:4752–67. https://doi.org/10.1093/eurheartj/ehad583 doi: 10.1093/eurheartj/ehad583. [DOI] [PMC free article] [PubMed]
  162. Jentzer JC, Schrage B, Holmes DR, Jr, Dabboura S, Anavekar NS, Kirchhof P, et al. Influence of age and shock severity on short-term survival in patients with cardiogenic shock. Eur Heart J Acute Cardiovasc Care 2021;10:604–12. https://doi.org/10.1093/ehjacc/zuaa035 doi: 10.1093/ehjacc/zuaa035. [DOI] [PubMed]

RESOURCES