Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1995 Jun 1;308(Pt 2):629–633. doi: 10.1042/bj3080629

Glutamine transport by vesicles isolated from tumour-cell mitochondrial inner membrane.

M Molina 1, J A Segura 1, J C Aledo 1, M A Medina 1, I Núnez de Castro 1, J Márquez 1
PMCID: PMC1136972  PMID: 7772051

Abstract

Mitochondrial-inner-membrane vesicles, isolated from Ehrlich ascites carcinoma cells by titration with detergents, accumulated L-glutamine by a very efficient transport system. The vesicles lack any phosphate-activated glutaminase activity, allowing measurement of transport rates without interference by L-glutamine metabolism. The time course of the transport was linear for the first 60 s, reaching a steady state after 120 min. L-Glutamine transport showed co-operativity, with a Hill coefficient of 2.2; the kinetic parameters S0.5 and Vmax had values of 5 mM and 26 nmol/30 s per mg of protein respectively. The pH-dependence curve showed a bell shape, with a pH optimum about 8.0. The uptake of L-glutamine was not affected by the presence of a 50-fold molar excess of D-glutamine, L-cysteine, L-histidine, L-alanine, L-serine and L-leucine, whereas L-glutamate behaved as a poor inhibitor. The structural analogue L-glutamate gamma-hydroxamate (5mM) inhibited the net uptake by 68%; interestingly, other analogues (6-diazo-5-oxo-L-norleucine, acivicin and L-glutamate gamma-hydrazide) were ineffective. The impermeant thiol reagent p-chloromercuriphenylsulphonic acid (0.5mM) completely abolished the mitochondrial L-glutamine uptake; in contrast, other thiol reagents (mersalyl and N-ethylmaleimide) did not significantly affect the transport. These data confirm the existence of a specific transport system with high capacity for L-glutamine in the mitochondrial inner membrane, a step preceding the highly operative glutaminolysis in tumour cells.

Full text

PDF
632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aledo J. C., Gómez-Biedma S., Segura J. A., Molina M., Núez de Castro I., Márquez J. Native polyacrylamide gel electrophoresis of membrane proteins: glutaminase detection after in situ specific activity staining. Electrophoresis. 1993 Jan-Feb;14(1-2):88–93. doi: 10.1002/elps.1150140116. [DOI] [PubMed] [Google Scholar]
  2. Aledo J. C., Segura J. A., Medina M. A., Alonso F. J., Núez de Castro I., Márquez J. Phosphate-activated glutaminase expression during tumor development. FEBS Lett. 1994 Mar 14;341(1):39–42. doi: 10.1016/0014-5793(94)80236-x. [DOI] [PubMed] [Google Scholar]
  3. Astle L., Cooper C. Relationship of sidedness of mitochondrial inner membrane vesicles to their enzymic properties. Biochemistry. 1974 Jan 1;13(1):154–160. doi: 10.1021/bi00698a024. [DOI] [PubMed] [Google Scholar]
  4. Chen M. K., Espat N. J., Bland K. I., Copeland E. M., 3rd, Souba W. W. Influence of progressive tumor growth on glutamine metabolism in skeletal muscle and kidney. Ann Surg. 1993 Jun;217(6):655–667. doi: 10.1097/00000658-199306000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Christensen H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990 Jan;70(1):43–77. doi: 10.1152/physrev.1990.70.1.43. [DOI] [PubMed] [Google Scholar]
  6. Esmann M. ATPase and phosphatase activity of Na+,K+-ATPase: molar and specific activity, protein determination. Methods Enzymol. 1988;156:105–115. doi: 10.1016/0076-6879(88)56013-5. [DOI] [PubMed] [Google Scholar]
  7. Goldstein L., Boylan J. M. Renal mitochondrial glutamine transport and metabolism: studies with a rapid-mixing, rapid-filtration technique. Am J Physiol. 1978 Jun;234(6):F514–F521. doi: 10.1152/ajprenal.1978.234.6.F514. [DOI] [PubMed] [Google Scholar]
  8. Greenawalt J. W. The isolation of outer and inner mitochondrial membranes. Methods Enzymol. 1974;31:310–323. doi: 10.1016/0076-6879(74)31033-6. [DOI] [PubMed] [Google Scholar]
  9. Joseph S. K., Meijer A. J. The inhibitory effects of sulphydryl reagents on the transport and hydrolysis of glutamine in rat-liver mitochondria. Eur J Biochem. 1981 Oct;119(3):523–529. doi: 10.1111/j.1432-1033.1981.tb05639.x. [DOI] [PubMed] [Google Scholar]
  10. Klingenberg M. Overview of mitochondrial metabolite transport systems. Methods Enzymol. 1979;56:245–252. doi: 10.1016/0076-6879(79)56027-3. [DOI] [PubMed] [Google Scholar]
  11. Kovacevic Z., McGivan J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983 Apr;63(2):547–605. doi: 10.1152/physrev.1983.63.2.547. [DOI] [PubMed] [Google Scholar]
  12. Kovacević Z., Bajin K. Kinetics of glutamine-efflux from liver mitochondria loaded with the 14C-Labeled substrate. Biochim Biophys Acta. 1982 May 7;687(2):291–295. doi: 10.1016/0005-2736(82)90557-0. [DOI] [PubMed] [Google Scholar]
  13. Kovacević Z. Importance of the flux of phosphate across the inner membrane of kidney mitochondria for the activation of glutaminase and the transport of glutamine. Biochim Biophys Acta. 1976 Jun 8;430(3):399–412. doi: 10.1016/0005-2728(76)90015-3. [DOI] [PubMed] [Google Scholar]
  14. Kovacević Z., McGivan J. D., Chappell J. B. Conditions for activity of glutaminase in kidney mitochondria. Biochem J. 1970 Jun;118(2):265–274. doi: 10.1042/bj1180265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Krämer R., Palmieri F. Molecular aspects of isolated and reconstituted carrier proteins from animal mitochondria. Biochim Biophys Acta. 1989 Apr 17;974(1):1–23. doi: 10.1016/s0005-2728(89)80160-4. [DOI] [PubMed] [Google Scholar]
  16. LaNoue K. F., Schoolwerth A. C. Metabolite transport in mitochondria. Annu Rev Biochem. 1979;48:871–922. doi: 10.1146/annurev.bi.48.070179.004255. [DOI] [PubMed] [Google Scholar]
  17. Lauquin G. J., Villiers C., Michejda J. W., Hryniewiecka L. V., Vignais P. V. Adenine nucleotide transport in sonic submitochondrial particles. Kinetic properties and binding of specific inhibitors. Biochim Biophys Acta. 1977 May 11;460(2):331–345. doi: 10.1016/0005-2728(77)90219-5. [DOI] [PubMed] [Google Scholar]
  18. Low S. Y., Salter M., Knowles R. G., Pogson C. I., Rennie M. J. A quantitative analysis of the control of glutamine catabolism in rat liver cells. Use of selective inhibitors. Biochem J. 1993 Oct 15;295(Pt 2):617–624. doi: 10.1042/bj2950617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Low S. Y., Taylor P. M., Ahmed A., Pogson C. I., Rennie M. J. Substrate-specificity of glutamine transporters in membrane vesicles from rat liver and skeletal muscle investigated using amino acid analogues. Biochem J. 1991 Aug 15;278(Pt 1):105–111. doi: 10.1042/bj2780105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Markwell M. A., Haas S. M., Tolbert N. E., Bieber L. L. Protein determination in membrane and lipoprotein samples: manual and automated procedures. Methods Enzymol. 1981;72:296–303. doi: 10.1016/s0076-6879(81)72018-4. [DOI] [PubMed] [Google Scholar]
  21. Matsuno T. Bioenergetics of tumor cells: glutamine metabolism in tumor cell mitochondria. Int J Biochem. 1987;19(4):303–307. doi: 10.1016/0020-711x(87)90002-4. [DOI] [PubMed] [Google Scholar]
  22. McGivan J. D., Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Medina M. A., Núez de Castro I. Glutaminolysis and glycolysis interactions in proliferant cells. Int J Biochem. 1990;22(7):681–683. doi: 10.1016/0020-711x(90)90001-j. [DOI] [PubMed] [Google Scholar]
  24. Medina M. A., Quesada A. R., Márquez F. J., Sánchez-Jiménez F., Núez de Castro I. Inorganic phosphate and energy charge compartmentation in Ehrlich ascites tumour cells in the presence of glucose and/or glutamine. Biochem Int. 1988 Apr;16(4):713–718. [PubMed] [Google Scholar]
  25. Medina M. A., Quesada A. R., Núez de Castro I. L-glutamine transport in native vesicles isolated from Ehrlich ascites tumor cell membranes. J Bioenerg Biomembr. 1991 Aug;23(4):689–697. doi: 10.1007/BF00785818. [DOI] [PubMed] [Google Scholar]
  26. Medina M. A., Sánchez-Jiménez F., Márquez J., Rodríguez Quesada A., Núez de Castro I. Relevance of glutamine metabolism to tumor cell growth. Mol Cell Biochem. 1992 Jul 6;113(1):1–15. doi: 10.1007/BF00230880. [DOI] [PubMed] [Google Scholar]
  27. Márquez J., Sánchez-Jiménez F., Medina M. A., Quesada A. R., Núez de Castro I. Nitrogen metabolism in tumor bearing mice. Arch Biochem Biophys. 1989 Feb 1;268(2):667–675. doi: 10.1016/0003-9861(89)90335-4. [DOI] [PubMed] [Google Scholar]
  28. Nicholls D. G. The influence of respiration and ATP hydrolysis on the proton-electrochemical gradient across the inner membrane of rat-liver mitochondria as determined by ion distribution. Eur J Biochem. 1974 Dec 16;50(1):305–315. doi: 10.1111/j.1432-1033.1974.tb03899.x. [DOI] [PubMed] [Google Scholar]
  29. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  30. Palmieri F., Klingenberg M. Direct methods for measuring metabolite transport and distribution in mitochondria. Methods Enzymol. 1979;56:279–301. doi: 10.1016/0076-6879(79)56029-7. [DOI] [PubMed] [Google Scholar]
  31. Park C. E., Wenner C. E. Mitochondrial lipids of Ehrlich Lettré ascites tumor cells. Oncology. 1970;24(4):241–260. doi: 10.1159/000224525. [DOI] [PubMed] [Google Scholar]
  32. Quesada A. R., Medina M. A., Márquez J., Sánchez-Jiménez F. M., Núez de Castro I. Contribution by host tissues to circulating glutamine in mice inoculated with Ehrlich ascites tumor cells. Cancer Res. 1988 Mar 15;48(6):1551–1553. [PubMed] [Google Scholar]
  33. Quesada A. R., Sanchez-Jimenez F., Perez-Rodriguez J., Marquez J., Medina M. A., Nuñez de Castro I. Purification of phosphate-dependent glutaminase from isolated mitochondria of Ehrlich ascites-tumour cells. Biochem J. 1988 Nov 1;255(3):1031–1035. doi: 10.1042/bj2551031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sastrasinh M., Sastrasinh S. Effect of acute pH change on mitochondrial glutamine transport. Am J Physiol. 1990 Dec;259(6 Pt 2):F863–F866. doi: 10.1152/ajprenal.1990.259.6.F863. [DOI] [PubMed] [Google Scholar]
  35. Sastrasinh S., Sastrasinh M. Effect of acivicin on glutamine transport by rat renal brush border membrane vesicles. J Lab Clin Med. 1986 Oct;108(4):301–308. [PubMed] [Google Scholar]
  36. Sastrasinh S., Sastrasinh M. Glutamine transport in submitochondrial particles. Am J Physiol. 1989 Dec;257(6 Pt 2):F1050–F1058. doi: 10.1152/ajprenal.1989.257.6.F1050. [DOI] [PubMed] [Google Scholar]
  37. Simpson D. P., Adam W. Glutamine transport and metabolism by mitochondria from dog renal cortex. General properties and response to acidosis and alkalosis. J Biol Chem. 1975 Oct 25;250(20):8148–8158. [PubMed] [Google Scholar]
  38. Souba W. W. Glutamine and cancer. Ann Surg. 1993 Dec;218(6):715–728. doi: 10.1097/00000658-199312000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vargas J. L., Knecht E., Hernández-Yago J., Grisolía S. Cooperation of lysosomes and inner mitochondrial membrane in the degradation of carbamoyl phosphate synthetase and other proteins. Biochim Biophys Acta. 1990 Jun 20;1034(3):268–274. doi: 10.1016/0304-4165(90)90049-3. [DOI] [PubMed] [Google Scholar]
  40. Wehrle J. P., Cintrón N. M., Pedersen P. L. Phosphate transport in rat liver mitochondria. Energy-dependent accumulation of phosphate by inverted inner membrane vesicles. J Biol Chem. 1978 Dec 10;253(23):8598–8603. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES