Skip to main content

This is a preprint.

It has not yet been peer reviewed by a journal.

The National Library of Medicine is running a pilot to include preprints that result from research funded by NIH in PMC and PubMed.

bioRxiv logoLink to bioRxiv
[Preprint]. 2024 Aug 23:2024.08.22.609269. [Version 1] doi: 10.1101/2024.08.22.609269

Regulation of angiogenesis by signal sequence-derived peptides

Mean Ghim, Linyan Wei, Jae-Joon Jung, Erlinda The, Gunjan Kukreja, Afarin Neishabouri, Azmi A Ahmad, M Zawwad Raza, Arvene Golbazi, Keshvad Hedayatyanfard, Lei Nie, Jiasheng Zhang, Mehran M Sadeghi
PMCID: PMC11370592  PMID: 39229053

ABSTRACT

Background

The neuropilin-like, Discoidin, CUB and LCCL domain containing 2 (DCBLD2) is a transmembrane protein with an unusually long signal sequence (SS) composed of N-terminal (N) and C-terminal (C) subdomains, separated by a transition (tra) subdomain. DCBLD2 interacts with VEGFR-2 and regulates VEGF-induced endothelial cell signaling, proliferation and migration, as well as angiogenesis. The exact mechanisms by which DCBLD2 interacts with VEGFR2 to modulate VEGF signaling remain unclear.

Methods

Searching for VEGFR2 interacting DCBLD2 domains, we generated various constructs containing different DCBLD2 domain combinations and conducted co-immunoprecipitation and signaling studies in HEK 293T and endothelial cells. Several peptides were synthesized based on the identified domain, and their effect on VEGF signaling was assessed in vitro in cell culture and in vivo using matrigel plug and corneal micropocket assays. The effect of the lead peptide was further evaluated using a murine hindlimb ischemia model.

Results

DCBLD2 SS interacted with VEGFR2 and promoted VEGF signaling. SS was not cleaved in the mature DCBLD2 and its hydrophobic transmembrane ‘traC’ segment, but not the ‘N’ subdomain, was involved in DCBLD2-VEGFR2 interaction. The smallest unit in DCBLD2 SS that interacts with VEGFR2 was the L5VL5 sequence. Even after the central valine was removed, the L10 sequence mimicked the DCBLD2 SS traC’s effect on VEGF-signaling, while shorter or longer poly-leucine sequences were less effective. Finally, a synthetic traC peptide enhanced VEGF signaling in vitro, promoted VEGF-induced angiogenesis in vivo, and improved blood flow recovery following hindlimb ischemia.

Conclusion

DCBLD2 SS along with its derivative peptides can promote VEGFR2 signaling and angiogenesis. Synthetic peptides based on DCBLD2 SS hold promise as therapeutic agents for regulating angiogenesis. Importantly these findings refine the traditional view of signal sequences as mere targeting elements, revealing a role in cellular signaling. This opens new avenues for research and therapeutic strategies.

Full Text Availability

The license terms selected by the author(s) for this preprint version do not permit archiving in PMC. The full text is available from the preprint server.


Articles from bioRxiv are provided here courtesy of Cold Spring Harbor Laboratory Preprints

RESOURCES