Abstract
The electronic structures of the cationic isoenzyme of peanut peroxidase, horseradish peroxidase (isoenzyme C) and bovine liver catalase are compared through analysis of their optical absorption and magnetic c.d. (m.c.d.) spectral properties. The spectral data for the native resting states and compounds I and II of peanut peroxidase (PeP) are reported. The absorption and m.c.d. data for the native PeP exhibit bands characteristic of the high-spin ferric haem. The absorption spectrum of PeP compound I closely resembles that observed for the HRP compound I species. The m.c.d. data for PeP I clearly identifies that ring oxidation has occurred. One-electron reduction forms the PeP compound II species. The absorption and m.c.d. spectra recorded for PeP II exhibit the well-resolved spectral characteristics previously observed for both HRP compound II and catalase compound II. The spectral data of PeP with HRP and catalase are compared. The data clearly indicate that the m.c.d. spectral patterns of both plant peroxidases (PeP and HRP) are very similar and, therefore, the electronic structures of their resting states, and as well their primary and secondary compounds, must be similar. The m.c.d. data suggest that, while the compound I species of PeP and HRP belong to one electronic class, catalase compound I belongs to a different class. These data emphasize how the ground states of these two classes of oxidized haem, may be characterized as predominantly 2A2u (PeP I and HRP I) or 2A1u (catalase I). Peanut peroxidase is the second plant peroxidase for which the electronic structure of the compound I intermediate has been studied using the m.c.d. technique. The similarities with horseradish peroxidase allow us to suggest that plant peroxidases may operate by the same general mechanism, in spite of the low degree of sequence similarity between their polypeptide chains.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ban N., van Huystee R. B., Day J., Greenwood A., Larson S., Esnault R., McPherson A. Preliminary crystallographic study of peanut peroxidase. Acta Crystallogr B. 1992 Feb 1;48(Pt 1):109–111. doi: 10.1107/s0108768191008807. [DOI] [PubMed] [Google Scholar]
- Browett W. R., Gasyna Z., Stillman M. J. The temperature dependence of the MCD spectrum of horseradish peroxidase compound I. Biochem Biophys Res Commun. 1983 Apr 29;112(2):515–520. doi: 10.1016/0006-291x(83)91495-x. [DOI] [PubMed] [Google Scholar]
- Browett W. R., Stillman M. J. Magnetic circular dichroism studies of bovine liver catalase. Biochim Biophys Acta. 1979 Apr 25;577(2):291–306. doi: 10.1016/0005-2795(79)90033-3. [DOI] [PubMed] [Google Scholar]
- Browett W. R., Stillman M. J. Magnetic circular dichroism studies on the electronic configuration of catalase compounds I and II. Biochim Biophys Acta. 1980 May 29;623(1):21–31. doi: 10.1016/0005-2795(80)90004-5. [DOI] [PubMed] [Google Scholar]
- Browlett W. R., Stillman M. J. Evidence for heme pi cation radical species in compound I of horseradish peroxidase and catalase. Biochim Biophys Acta. 1981 Jul 24;660(1):1–7. doi: 10.1016/0005-2744(81)90100-5. [DOI] [PubMed] [Google Scholar]
- Buffard D., Breda C., van Huystee R. B., Asemota O., Pierre M., Ha D. B., Esnault R. Molecular cloning of complementary DNAs encoding two cationic peroxidases from cultivated peanut cells. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8874–8878. doi: 10.1073/pnas.87.22.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson J. H., Bracete A. M., Huff A. M., Kadkhodayan S., Zeitler C. M., Sono M., Chang C. K., Loewen P. C. The active site structure of E. coli HPII catalase. Evidence favoring coordination of a tyrosinate proximal ligand to the chlorin iron. FEBS Lett. 1991 Dec 16;295(1-3):123–126. doi: 10.1016/0014-5793(91)81401-s. [DOI] [PubMed] [Google Scholar]
- Dawson J. H. Probing structure-function relations in heme-containing oxygenases and peroxidases. Science. 1988 Apr 22;240(4851):433–439. doi: 10.1126/science.3358128. [DOI] [PubMed] [Google Scholar]
- Dolphin D., Forman A., Borg D. C., Fajer J., Felton R. H. Compounds I of catalase and horse radish peroxidase: pi-cation radicals. Proc Natl Acad Sci U S A. 1971 Mar;68(3):614–618. doi: 10.1073/pnas.68.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolphin D., Muljiani Z., Rousseau K., Borg D. C., Fajer J., Felton R. H. The chemistry of porphyrin pi-cations. Ann N Y Acad Sci. 1973;206:177–200. doi: 10.1111/j.1749-6632.1973.tb43211.x. [DOI] [PubMed] [Google Scholar]
- Eglinton D. G., Gadsby P. M., Sievers G., Peterson J., Thomson A. J. A comparative study of the low-temperature magnetic circular dichroism spectra of horse heart metmyoglobin and bovine liver catalase derivatives. Biochim Biophys Acta. 1983 Feb 15;742(3):648–658. doi: 10.1016/0167-4838(83)90284-4. [DOI] [PubMed] [Google Scholar]
- Fajer J., Borg D. C., Forman A., Felton R. H., Vegh L., Dolphin D. ESR studies of porphyrin pi-cations: the 2A1u and 2A2u states. Ann N Y Acad Sci. 1973;206:349–364. doi: 10.1111/j.1749-6632.1973.tb43221.x. [DOI] [PubMed] [Google Scholar]
- Foote N., Gadsby P. M., Field R. A., Greenwood C., Thomson A. J. A comparison by magnetic circular dichroism of compound X and compound II of horseradish peroxidase. FEBS Lett. 1987 Apr 20;214(2):347–350. doi: 10.1016/0014-5793(87)80085-6. [DOI] [PubMed] [Google Scholar]
- Fuhrhop J. H., Mauzerall D. The one-electron oxidation of magnesium octaethylporphin. J Am Chem Soc. 1968 Jul 3;90(14):3875–3876. doi: 10.1021/ja01016a057. [DOI] [PubMed] [Google Scholar]
- Fuhrhop J. H., Mauzerall D. The one-electron oxidation of metalloporphyrins. J Am Chem Soc. 1969 Jul 16;91(15):4174–4181. doi: 10.1021/ja01043a027. [DOI] [PubMed] [Google Scholar]
- Gasyna Z., Browett W. R., Stillman M. J. Low-temperature magnetic circular dichroism studies of the photoreaction of horseradish peroxidase compound I. Biochemistry. 1988 Apr 5;27(7):2503–2509. doi: 10.1021/bi00407a037. [DOI] [PubMed] [Google Scholar]
- McIntosh A. R., Stillman M. J. Electron-paramagnetic-resonance studies on a photochemically produced species of horseradish peroxidase compound I. Biochem J. 1977 Oct 1;167(1):31–37. doi: 10.1042/bj1670031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morishima I., Ogawa S. Proton nuclear magnetic resonance spectra of compounds I and II of horseradish peroxidase. Biochemistry. 1978 Oct 17;17(21):4384–4388. doi: 10.1021/bi00614a005. [DOI] [PubMed] [Google Scholar]
- Peisach J., Blumberg W. E., Wittenberg B. A., Wittenberg J. B. The electronic structure of protoheme proteins. 3. Configuration of the heme and its ligands. J Biol Chem. 1968 Apr 25;243(8):1871–1880. [PubMed] [Google Scholar]
- Sievers G., Gadsby P. M., Peterson J., Thomson A. J. Assignment of the axial ligands of the haem in milk lactoperoxidase using magnetic circular dichroism spectroscopy. Biochim Biophys Acta. 1983 Feb 15;742(3):659–668. doi: 10.1016/0167-4838(83)90285-6. [DOI] [PubMed] [Google Scholar]
- Stillman J. S., Stillman M. J., Dunford H. B. Horseradish peroxidase. XIX. A photochemical reaction of compound I at 5 degrees K. Biochem Biophys Res Commun. 1975 Mar 3;63(1):32–35. doi: 10.1016/s0006-291x(75)80006-4. [DOI] [PubMed] [Google Scholar]
- Stillman M. J., Hollebone B. R., Stillman J. S. Characterization of the chromophores in horseradish peroxidase compounds I and II using magnetic circular dichroism. Biochem Biophys Res Commun. 1976 Sep 20;72(2):554–559. doi: 10.1016/s0006-291x(76)80076-9. [DOI] [PubMed] [Google Scholar]
- Strickland E. H., Kay E., Shannon L. M., Horwitz J. Peroxidase isoenzymes from horseradish roots. 3. Circular dichroism of isoenzymes and apoisoenzymes. J Biol Chem. 1968 Jul 10;243(13):3560–3565. [PubMed] [Google Scholar]
- Welinder K. G. Plant peroxidases. Their primary, secondary and tertiary structures, and relation to cytochrome c peroxidase. Eur J Biochem. 1985 Sep 16;151(3):497–504. doi: 10.1111/j.1432-1033.1985.tb09129.x. [DOI] [PubMed] [Google Scholar]