Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Dec 15;304(Pt 3):675–678. doi: 10.1042/bj3040675

Cyclic AMP-induced mucin exocytosis is independent of Cl- movements in human colonic epithelial cells (HT29-Cl.16E).

A Jarry 1, D Merlin 1, U Hopfer 1, C L Laboisse 1
PMCID: PMC1137386  PMID: 7818467

Abstract

The human colonic epithelial goblet cell line HT29-Cl.16E was used to test whether stimulated Cl- transport is involved in the mucin exocytotic response to an increase in intracellular cyclic AMP by measuring in parallel the short-circuit current (Isc) and mucin exocytosis. Addition of 50 microM forskolin to HT29-Cl.16E cells resulted in a 2-fold stimulation of mucin release and an increase in Isc by 20 microA/cm2. To evaluate the requirement for cosecretion of Cl-, the Cl- flux was altered by three different manipulations: (1) Cl- in the medium was replaced by the poorly transported anion gluconate; (2) basolateral Cl- influx through the Na(+)-K(+)-2Cl- cotransporter was inhibited by bumetanide; and (3) an inward Cl- flux through the apical plasma membrane was generated by reversing the Cl- gradient. These manipulations did not change the forskolin-stimulated mucin release and thereby provide evidence that Cl- movements are not required for fusion of mucin granules with the plasma membrane.

Full text

PDF
675

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W. Exocytosis. Annu Rev Physiol. 1990;52:607–624. doi: 10.1146/annurev.ph.52.030190.003135. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. P., Rich D. P., Gregory R. J., Smith A. E., Welsh M. J. Generation of cAMP-activated chloride currents by expression of CFTR. Science. 1991 Feb 8;251(4994):679–682. doi: 10.1126/science.1704151. [DOI] [PubMed] [Google Scholar]
  3. Augeron C., Laboisse C. L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 1984 Sep;44(9):3961–3969. [PubMed] [Google Scholar]
  4. Augeron C., Voisin T., Maoret J. J., Berthon B., Laburthe M., Laboisse C. L. Neurotensin and neuromedin N stimulate mucin output from human goblet cells (Cl.16E) via neurotensin receptors. Am J Physiol. 1992 Mar;262(3 Pt 1):G470–G476. doi: 10.1152/ajpgi.1992.262.3.G470. [DOI] [PubMed] [Google Scholar]
  5. De Lisle R. C., Hopfer U. Electrolyte permeabilities of pancreatic zymogen granules: implications for pancreatic secretion. Am J Physiol. 1986 Apr;250(4 Pt 1):G489–G496. doi: 10.1152/ajpgi.1986.250.4.G489. [DOI] [PubMed] [Google Scholar]
  6. Kopelman H., Gauthier C. Cyclic AMP-sensitive chloride efflux in rabbit pancreatic acini. Pediatr Res. 1991 Jun;29(6):529–533. doi: 10.1203/00006450-199106010-00002. [DOI] [PubMed] [Google Scholar]
  7. Kubitz R., Warth R., Allert N., Kunzelmann K., Greger R. Small-conductance chloride channels induced by cAMP, Ca2+, and hypotonicity in HT29 cells: ion selectivity, additivity and stilbene sensitivity. Pflugers Arch. 1992 Aug;421(5):447–454. doi: 10.1007/BF00370255. [DOI] [PubMed] [Google Scholar]
  8. Marcon M. A., McCool D., Forstner J., Forstner G. Inhibition of mucin secretion in a colonic adenocarcinoma cell line by DIDS and potassium channel blockers. Biochim Biophys Acta. 1990 Apr 9;1052(1):17–23. doi: 10.1016/0167-4889(90)90051-e. [DOI] [PubMed] [Google Scholar]
  9. Matthews J. B., Awtrey C. S., Madara J. L. Microfilament-dependent activation of Na+/K+/2Cl- cotransport by cAMP in intestinal epithelial monolayers. J Clin Invest. 1992 Oct;90(4):1608–1613. doi: 10.1172/JCI116030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Merlin D., Augeron C., Tien X. Y., Guo X., Laboisse C. L., Hopfer U. ATP-stimulated electrolyte and mucin secretion in the human intestinal goblet cell line HT29-Cl.16E. J Membr Biol. 1994 Jan;137(2):137–149. doi: 10.1007/BF00233483. [DOI] [PubMed] [Google Scholar]
  11. Morris A. P., Cunningham S. A., Benos D. J., Frizzell R. A. Cellular differentiation is required for cAMP but not Ca(2+)-dependent Cl- secretion in colonic epithelial cells expressing high levels of cystic fibrosis transmembrane conductance regulator. J Biol Chem. 1992 Mar 15;267(8):5575–5583. [PubMed] [Google Scholar]
  12. Petersen C. C., Toescu E. C., Petersen O. H. Different patterns of receptor-activated cytoplasmic Ca2+ oscillations in single pancreatic acinar cells: dependence on receptor type, agonist concentration and intracellular Ca2+ buffering. EMBO J. 1991 Mar;10(3):527–533. doi: 10.1002/j.1460-2075.1991.tb07979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sood R., Bear C., Auerbach W., Reyes E., Jensen T., Kartner N., Riordan J. R., Buchwald M. Regulation of CFTR expression and function during differentiation of intestinal epithelial cells. EMBO J. 1992 Jul;11(7):2487–2494. doi: 10.1002/j.1460-2075.1992.tb05313.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sturgess J., Imrie J. Quantitative evaluation of the development of tracheal submucosal glands in infants with cystic fibrosis and control infants. Am J Pathol. 1982 Mar;106(3):303–311. [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES