Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Nov 1;303(Pt 3):731–736. doi: 10.1042/bj3030731

Cloning and initial characterization of the promoter region of the rat cysteine-rich intestinal protein gene.

C W Levenson 1, N F Shay 1, R J Cousins 1
PMCID: PMC1137607  PMID: 7980439

Abstract

Cysteine-rich intestinal protein (CRIP) is an intestinal Zn(2+)-binding protein containing a single copy of the double Zn(2+)-finger arrangement known as the LIM motif. CRIP is developmentally regulated and can be induced by glucocorticoid hormones during the early suckling period. In this report we show that CRIP mRNA levels are induced by dexamethasone in cultured rat intestinal epithelial cells (IEC-6). Analysis of the 2644 bp of the 5'-flanking region of the CRIP gene revealed that the CRIP promoter lacks classical CAAT and TATA boxes but contains GC-rich regions in the proximal end of the promoter that probably function in transcription initiation. In addition to binding sites for transcription factors such as Sp-1, AP-2, OCT and GATA-2, there are multiple glucocorticoid-response elements. CRIP promoter constructs fused to the chloramphenicol acetyltransferase reporter gene and transfected into IEC-6 cells confirmed glucocorticoid responsiveness and the presence of negative acting elements. Mobility-shift assays revealed the presence of nuclear factors that bind to the CRIP promoter as a result of dexamethasone treatment. These experiments provide the initial data required to explore further the regulation of this tissue-specific developmentally regulated Zn(2+)-finger protein.

Full text

PDF
731

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Birkenmeier E. H., Gordon J. I. Developmental regulation of a gene that encodes a cysteine-rich intestinal protein and maps near the murine immunoglobulin heavy chain locus. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2516–2520. doi: 10.1073/pnas.83.8.2516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boehm T., Foroni L., Kennedy M., Rabbitts T. H. The rhombotin gene belongs to a class of transcriptional regulators with a potential novel protein dimerisation motif. Oncogene. 1990 Jul;5(7):1103–1105. [PubMed] [Google Scholar]
  3. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  4. Cousins R. J., Lee-Ambrose L. M. Nuclear zinc uptake and interactions and metallothionein gene expression are influenced by dietary zinc in rats. J Nutr. 1992 Jan;122(1):56–64. doi: 10.1093/jn/122.1.56. [DOI] [PubMed] [Google Scholar]
  5. Diamond M. I., Miner J. N., Yoshinaga S. K., Yamamoto K. R. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990 Sep 14;249(4974):1266–1272. doi: 10.1126/science.2119054. [DOI] [PubMed] [Google Scholar]
  6. Fan W., Trifiletti R., Cooper T., Norris J. S. Cloning of a mu-class glutathione S-transferase gene and identification of the glucocorticoid regulatory domains in its 5' flanking sequence. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6104–6108. doi: 10.1073/pnas.89.13.6104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fleming R. E., Gitlin J. D. Structural and functional analysis of the 5'-flanking region of the rat ceruloplasmin gene. J Biol Chem. 1992 Jan 5;267(1):479–486. [PubMed] [Google Scholar]
  8. Freyd G., Kim S. K., Horvitz H. R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 1990 Apr 26;344(6269):876–879. doi: 10.1038/344876a0. [DOI] [PubMed] [Google Scholar]
  9. Gorski K., Carneiro M., Schibler U. Tissue-specific in vitro transcription from the mouse albumin promoter. Cell. 1986 Dec 5;47(5):767–776. doi: 10.1016/0092-8674(86)90519-2. [DOI] [PubMed] [Google Scholar]
  10. Hempe J. M., Cousins R. J. Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. J Nutr. 1992 Jan;122(1):89–95. doi: 10.1093/jn/122.1.89. [DOI] [PubMed] [Google Scholar]
  11. Hempe J. M., Cousins R. J. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9671–9674. doi: 10.1073/pnas.88.21.9671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lenardo M. J., Staudt L., Robbins P., Kuang A., Mulligan R. C., Baltimore D. Repression of the IgH enhancer in teratocarcinoma cells associated with a novel octamer factor. Science. 1989 Jan 27;243(4890):544–546. doi: 10.1126/science.2536195. [DOI] [PubMed] [Google Scholar]
  13. Levenson C. W., Shay N. F., Lee-Ambrose L. M., Cousins R. J. Regulation of cysteine-rich intestinal protein by dexamethasone in the neonatal rat. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):712–715. doi: 10.1073/pnas.90.2.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miner J. N., Yamamoto K. R. Regulatory crosstalk at composite response elements. Trends Biochem Sci. 1991 Nov;16(11):423–426. doi: 10.1016/0968-0004(91)90168-u. [DOI] [PubMed] [Google Scholar]
  15. Mink S., Ponta H., Cato A. C. The long terminal repeat region of the mouse mammary tumour virus contains multiple regulatory elements. Nucleic Acids Res. 1990 Apr 25;18(8):2017–2024. doi: 10.1093/nar/18.8.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minowa M. T., Minowa T., Monsma F. J., Jr, Sibley D. R., Mouradian M. M. Characterization of the 5' flanking region of the human D1A dopamine receptor gene. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3045–3049. doi: 10.1073/pnas.89.7.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Minowa M. T., Minowa T., Monsma F. J., Jr, Sibley D. R., Mouradian M. M. Characterization of the 5' flanking region of the human D1A dopamine receptor gene. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3045–3049. doi: 10.1073/pnas.89.7.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Needleman D. S., Leeper L. L., Nanthakumar N. N., Henning S. J. Hormonal regulation of the mRNA for cysteine-rich intestinal protein in rat jejunum during maturation. J Pediatr Gastroenterol Nutr. 1993 Jan;16(1):15–22. doi: 10.1097/00005176-199301000-00004. [DOI] [PubMed] [Google Scholar]
  19. Nichols G. M., Pearce A. R., Alverez X., Bibb N. K., Nichols K. Y., Alfred C. B., Glass J. The mechanisms of nonheme iron uptake determined in IEC-6 rat intestinal cells. J Nutr. 1992 Apr;122(4):945–952. doi: 10.1093/jn/122.4.945. [DOI] [PubMed] [Google Scholar]
  20. Ouellette A. J., Greco R. M., James M., Frederick D., Naftilan J., Fallon J. T. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J Cell Biol. 1989 May;108(5):1687–1695. doi: 10.1083/jcb.108.5.1687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pugh B. F., Tjian R. Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell. 1990 Jun 29;61(7):1187–1197. doi: 10.1016/0092-8674(90)90683-6. [DOI] [PubMed] [Google Scholar]
  22. Ratajczak T., Williams P. M., DiLorenzo D., Ringold G. M. Multiple elements within the glucocorticoid regulatory unit of the rat alpha 1-acid glycoprotein gene are recognition sites for C/EBP. J Biol Chem. 1992 Jun 5;267(16):11111–11119. [PubMed] [Google Scholar]
  23. Ron D., Habener J. F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 1992 Mar;6(3):439–453. doi: 10.1101/gad.6.3.439. [DOI] [PubMed] [Google Scholar]
  24. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  25. Sadler I., Crawford A. W., Michelsen J. W., Beckerle M. C. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol. 1992 Dec;119(6):1573–1587. doi: 10.1083/jcb.119.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schüle R., Muller M., Kaltschmidt C., Renkawitz R. Many transcription factors interact synergistically with steroid receptors. Science. 1988 Dec 9;242(4884):1418–1420. doi: 10.1126/science.3201230. [DOI] [PubMed] [Google Scholar]
  27. Seed B., Sheen J. Y. A simple phase-extraction assay for chloramphenicol acyltransferase activity. Gene. 1988 Jul 30;67(2):271–277. doi: 10.1016/0378-1119(88)90403-9. [DOI] [PubMed] [Google Scholar]
  28. Shapiro D. J., Sharp P. A., Wahli W. W., Keller M. J. A high-efficiency HeLa cell nuclear transcription extract. DNA. 1988 Jan-Feb;7(1):47–55. doi: 10.1089/dna.1988.7.47. [DOI] [PubMed] [Google Scholar]
  29. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  30. Su Y., Pitot H. C. Location and characterization of multiple glucocorticoid-responsive elements in the rat serine dehydratase gene. Arch Biochem Biophys. 1992 Sep;297(2):239–243. doi: 10.1016/0003-9861(92)90667-l. [DOI] [PubMed] [Google Scholar]
  31. Wang X., Lee G., Liebhaber S. A., Cooke N. E. Human cysteine-rich protein. A member of the LIM/double-finger family displaying coordinate serum induction with c-myc. J Biol Chem. 1992 May 5;267(13):9176–9184. [PubMed] [Google Scholar]
  32. Zhu Q. S., Grimsby J., Chen K., Shih J. C. Promoter organization and activity of human monoamine oxidase (MAO) A and B genes. J Neurosci. 1992 Nov;12(11):4437–4446. doi: 10.1523/JNEUROSCI.12-11-04437.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES