Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1993 Dec 1;296(Pt 2):435–441. doi: 10.1042/bj2960435

A comparison of Zn(II) and Co(II) in the kinetics of inactivation of aminoacylase by 1,10-phenanthroline and reconstitution of the apoenzyme.

H B Wu 1, C L Tsou 1
PMCID: PMC1137714  PMID: 8257435

Abstract

The kinetics of reconstitution of apoacylase with either Zn(II) or Co(II) and the inactivation of the Co(II) reconstituted enzyme by 1,10-phenanthroline (OP) has been studied by following the substrate reaction continuously in presence of the metal ion or OP respectively. Although the native Zn(II)-containing and the Co(II)-reconstituted enzymes have closely similar Michaelis constants and maximal velocities, the kinetics for both the inactivation by OP and the reconstitution of the apoenzyme with the metal ions differs considerably. For Co(II), both the inactivation by OP and the reconstitution show simple kinetics, but for Zn(II), the inhibition by OP is a multi-phasic process [Wang, Wu, Wang, Zhou and Tsou (1992) Biochem. J. 281, 285-290], and the kinetics of reconstitution is also much more complicated. Both the native and the Co(II)-reconstituted enzymes are inhibited by excess of Zn(II), but not by Co(II). The inhibition by Zn(II) in excess and the reconstitution of the apoenzyme with Zn(II) are co-operative processes. The inhibition by Zn and its effect on the fluorescence emission of 1-anilinonaphthalene-8-sulphonic acid bound to the native enzyme indicate multiple Zn(II)-binding sites.

Full text

PDF
438

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Billo E. J. Kinetics of interaction of ligands with carboxypeptidase A. J Inorg Biochem. 1979 Jul;10(4):331–339. doi: 10.1016/s0162-0134(00)80199-3. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Geoghegan K. F., Holmquist B., Spilburg C. A., Vallee B. L. Spectral properties of cobalt carboxypeptidase A. Interaction of the metal atom with anions. Biochemistry. 1983 Apr 12;22(8):1847–1852. doi: 10.1021/bi00277a016. [DOI] [PubMed] [Google Scholar]
  4. Gilles I., Löffler H. G., Schneider F. Ein neues Isolierungsverfahren für Schweinenierenacylase. Kinetik des Co2+, Mn2+, Ni2+ und Cd2+-enzyms. Z Naturforsch C. 1984 Sep-Oct;39(9-10):1017–1020. [PubMed] [Google Scholar]
  5. Heese D., Berger S., Röhm K. H. Nuclear magnetic relaxation studies of the role of the metal ion in Mn2(+)-substituted aminoacylase I. Eur J Biochem. 1990 Feb 22;188(1):175–180. doi: 10.1111/j.1432-1033.1990.tb15385.x. [DOI] [PubMed] [Google Scholar]
  6. Kidani Y., Hirose J. Coordination chemical studies on metalloenzymes. II. Kinetic behavior of various types of chelating agents towards bovine carbonic anhydrase. J Biochem. 1977 May;81(5):1383–1391. [PubMed] [Google Scholar]
  7. Kördel W., Schneider F. Chemical investigations on pig kidney aminoacylase. Biochim Biophys Acta. 1976 Sep 14;445(2):446–457. doi: 10.1016/0005-2744(76)90098-x. [DOI] [PubMed] [Google Scholar]
  8. Kördel W., Schneider F. Renal aminoacylase, a zinc enzyme. Z Naturforsch C. 1977 May-Jun;32(5-6):342–344. doi: 10.1515/znc-1977-5-605. [DOI] [PubMed] [Google Scholar]
  9. Larsen K. S., Auld D. S. Carboxypeptidase A: mechanism of zinc inhibition. Biochemistry. 1989 Dec 12;28(25):9620–9625. doi: 10.1021/bi00451a012. [DOI] [PubMed] [Google Scholar]
  10. Latt S. A., Vallee B. L. Spectral properties of cobalt carboxypeptidase. The effects of substrates and inhibitors. Biochemistry. 1971 Nov;10(23):4263–4270. doi: 10.1021/bi00799a017. [DOI] [PubMed] [Google Scholar]
  11. Rees D. C., Lewis M., Honzatko R. B., Lipscomb W. N., Hardman K. D. Zinc environment and cis peptide bonds in carboxypeptidase A at 1.75-A resolution. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3408–3412. doi: 10.1073/pnas.78.6.3408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
  13. Tsou C. L. Kinetics of substrate reaction during irreversible modification of enzyme activity. Adv Enzymol Relat Areas Mol Biol. 1988;61:381–436. doi: 10.1002/9780470123072.ch7. [DOI] [PubMed] [Google Scholar]
  14. Vallee B. L., Galdes A. The metallobiochemistry of zinc enzymes. Adv Enzymol Relat Areas Mol Biol. 1984;56:283–430. doi: 10.1002/9780470123027.ch5. [DOI] [PubMed] [Google Scholar]
  15. Vallee B. L., Williams R. J. Metalloenzymes: the entatic nature of their active sites. Proc Natl Acad Sci U S A. 1968 Feb;59(2):498–505. doi: 10.1073/pnas.59.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vallee B. L. Zinc: biochemistry, physiology, toxicology and clinical pathology. Biofactors. 1988 Jan;1(1):31–36. [PubMed] [Google Scholar]
  17. Wang Z. X., Wu H. B., Wang X. C., Zhou H. M., Tsou C. L. Kinetics of the course of inactivation of aminoacylase by 1,10-phenanthroline. Biochem J. 1992 Jan 1;281(Pt 1):285–290. doi: 10.1042/bj2810285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wolz R. L., Zwilling R. Kinetic evidence for cooperative binding of two ortho-phenanthroline molecules to astacus protease during metal removal. J Inorg Biochem. 1989 Mar;35(3):157–167. doi: 10.1016/0162-0134(89)84007-3. [DOI] [PubMed] [Google Scholar]
  19. Zhang K., Chance B., Auld D. S., Larsen K. S., Vallee B. L. X-ray absorption fine structure study of the active site of zinc and cobalt carboxypeptidase A in their solution and crystalline forms. Biochemistry. 1992 Feb 4;31(4):1159–1168. doi: 10.1021/bi00119a027. [DOI] [PubMed] [Google Scholar]
  20. van Wart H. E., Vallee B. L. Enzymatically inactive, exchange-inert Co(III)-carboxypeptidase A: role of inner sphere coordination in peptide and ester catalysis. Biochemistry. 1978 Aug 8;17(16):3385–3394. doi: 10.1021/bi00609a032. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES