Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Feb 1;297(Pt 3):451–454. doi: 10.1042/bj2970451

Some taste substances are direct activators of G-proteins.

M Naim 1, R Seifert 1, B Nürnberg 1, L Grünbaum 1, G Schultz 1
PMCID: PMC1137854  PMID: 8110180

Abstract

Amphiphilic substances may stimulate cellular events through direct activation of G-proteins. The present experiments indicate that several amphiphilic sweeteners and the bitter tastant, quinine, activate transducin and Gi/Go-proteins. Concentrations of taste substances required to activate G-proteins in vitro correlated with those used to elicit taste. These data support the hypothesis that amphiphilic taste substances may elicit taste through direct activation of G-proteins.

Full text

PDF
451

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Kusakabe Y., Tanemura K., Emori Y., Arai S. Multiple genes for G protein-coupled receptors and their expression in lingual epithelia. FEBS Lett. 1993 Feb 1;316(3):253–256. doi: 10.1016/0014-5793(93)81302-g. [DOI] [PubMed] [Google Scholar]
  2. Akabas M. H., Dodd J., Al-Awqati Q. A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science. 1988 Nov 18;242(4881):1047–1050. doi: 10.1126/science.3194756. [DOI] [PubMed] [Google Scholar]
  3. Avenet P., Hofmann F., Lindemann B. Transduction in taste receptor cells requires cAMP-dependent protein kinase. Nature. 1988 Jan 28;331(6154):351–354. doi: 10.1038/331351a0. [DOI] [PubMed] [Google Scholar]
  4. Avenet P., Kinnamon S. C. Cellular basis of taste reception. Curr Opin Neurobiol. 1991 Aug;1(2):198–203. doi: 10.1016/0959-4388(91)90078-l. [DOI] [PubMed] [Google Scholar]
  5. Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
  6. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  7. Bradley R. M. Electrophysiological investigations of intravascular taste using perfused rat tongue. Am J Physiol. 1973 Feb;224(2):300–304. doi: 10.1152/ajplegacy.1973.224.2.300. [DOI] [PubMed] [Google Scholar]
  8. Bradley R. M., Mistretta C. M. Intravascular taste in rats as demonstrated by conditioned aversion to sodium saccharin. J Comp Physiol Psychol. 1971 May;75(2):186–189. doi: 10.1037/h0030813. [DOI] [PubMed] [Google Scholar]
  9. Cheung A. H., Huang R. R., Strader C. D. Involvement of specific hydrophobic, but not hydrophilic, amino acids in the third intracellular loop of the beta-adrenergic receptor in the activation of Gs. Mol Pharmacol. 1992 Jun;41(6):1061–1065. [PubMed] [Google Scholar]
  10. Friederich P., Nürnberg B., Schultz G., Hescheler J. Inversion of Ca2+ current modulation during recovery of neuroblastoma cells from pertussis toxin pretreatment. FEBS Lett. 1993 Nov 22;334(3):322–326. doi: 10.1016/0014-5793(93)80703-w. [DOI] [PubMed] [Google Scholar]
  11. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  12. Higashijima T., Burnier J., Ross E. M. Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity. J Biol Chem. 1990 Aug 25;265(24):14176–14186. [PubMed] [Google Scholar]
  13. Higashijima T., Uzu S., Nakajima T., Ross E. M. Mastoparan, a peptide toxin from wasp venom, mimics receptors by activating GTP-binding regulatory proteins (G proteins). J Biol Chem. 1988 May 15;263(14):6491–6494. [PubMed] [Google Scholar]
  14. Hwang P. M., Verma A., Bredt D. S., Snyder S. H. Localization of phosphatidylinositol signaling components in rat taste cells: role in bitter taste transduction. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7395–7399. doi: 10.1073/pnas.87.19.7395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kempf C., Klausner R. D., Weinstein J. N., Van Renswoude J., Pincus M., Blumenthal R. Voltage-dependent trans-bilayer orientation of melittin. J Biol Chem. 1982 Mar 10;257(5):2469–2476. [PubMed] [Google Scholar]
  16. Kier L. B. A molecular theory of sweet taste. J Pharm Sci. 1972 Sep;61(9):1394–1397. doi: 10.1002/jps.2600610910. [DOI] [PubMed] [Google Scholar]
  17. Koyama N., Kurihara K. Mechanism of bitter taste reception: interaction of bitter compounds with monolayers of lipids from bovine circumvallate papillae. Biochim Biophys Acta. 1972 Oct 23;288(1):22–26. doi: 10.1016/0005-2736(72)90219-2. [DOI] [PubMed] [Google Scholar]
  18. Kumazawa T., Kashiwayanagi M., Kurihara K. Neuroblastoma cell as a model for a taste cell: mechanism of depolarization in response to various bitter substances. Brain Res. 1985 Apr 29;333(1):27–33. doi: 10.1016/0006-8993(85)90120-9. [DOI] [PubMed] [Google Scholar]
  19. Lee A. G. Local anesthesia: the interaction between phospholipids and chlorpromazine, propranolol, and practolol. Mol Pharmacol. 1977 May;13(3):474–487. [PubMed] [Google Scholar]
  20. Lüllmann H., Lüllmann-Rauch R., Wassermann O. Lipidosis induced by amphiphilic cationic drugs. Biochem Pharmacol. 1978;27(8):1103–1108. doi: 10.1016/0006-2952(78)90435-5. [DOI] [PubMed] [Google Scholar]
  21. Matsuoka I., Mori T., Aoki J., Sato T., Kurihara K. Identification of novel members of G-protein coupled receptor superfamily expressed in bovine taste tissue. Biochem Biophys Res Commun. 1993 Jul 15;194(1):504–511. doi: 10.1006/bbrc.1993.1848. [DOI] [PubMed] [Google Scholar]
  22. Matthews H. B., Fields M., Fishbein L. Saccharin: distribution and excretion of a limited dose in the rat. J Agric Food Chem. 1973 Sep-Oct;21(5):916–919. doi: 10.1021/jf60189a025. [DOI] [PubMed] [Google Scholar]
  23. McLaughlin S. K., McKinnon P. J., Margolskee R. F. Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature. 1992 Jun 18;357(6379):563–569. doi: 10.1038/357563a0. [DOI] [PubMed] [Google Scholar]
  24. McLaughlin S. K., McKinnon P. J., Robichon A., Spickofsky N., Margolskee R. F. Gustducin and transducin: a tale of two G proteins. Ciba Found Symp. 1993;179:186–200. doi: 10.1002/9780470514511.ch12. [DOI] [PubMed] [Google Scholar]
  25. Moskowitz H. R., Kumraiah V., Sharma K. N., Jacobs H. L., Sharma S. D. Effects of hunger, satiety and glucose load upon taste intensity and taste hedonics. Physiol Behav. 1976 Apr;16(4):471–475. doi: 10.1016/0031-9384(76)90326-7. [DOI] [PubMed] [Google Scholar]
  26. Mousli M., Bronner C., Landry Y., Bockaert J., Rouot B. Direct activation of GTP-binding regulatory proteins (G-proteins) by substance P and compound 48/80. FEBS Lett. 1990 Jan 1;259(2):260–262. doi: 10.1016/0014-5793(90)80023-c. [DOI] [PubMed] [Google Scholar]
  27. Schmidt A., Hescheler J., Offermanns S., Spicher K., Hinsch K. D., Klinz F. J., Codina J., Birnbaumer L., Gausepohl H., Frank R. Involvement of pertussis toxin-sensitive G-proteins in the hormonal inhibition of dihydropyridine-sensitive Ca2+ currents in an insulin-secreting cell line (RINm5F). J Biol Chem. 1991 Sep 25;266(27):18025–18033. [PubMed] [Google Scholar]
  28. Schwyzer R. Estimated conformation, orientation, and accumulation of dynorphin A-(1-13)-tridecapeptide on the surface of neutral lipid membranes. Biochemistry. 1986 Jul 29;25(15):4281–4286. doi: 10.1021/bi00363a016. [DOI] [PubMed] [Google Scholar]
  29. Seeman P. Anti-schizophrenic drugs--membrane receptor sites of action. Biochem Pharmacol. 1977 Oct 1;26(19):1741–1748. doi: 10.1016/0006-2952(77)90340-9. [DOI] [PubMed] [Google Scholar]
  30. Shallenberger R. S., Acree T. E. Molecular theory of sweet taste. Nature. 1967 Nov 4;216(5114):480–482. doi: 10.1038/216480a0. [DOI] [PubMed] [Google Scholar]
  31. Simon M. I., Strathmann M. P., Gautam N. Diversity of G proteins in signal transduction. Science. 1991 May 10;252(5007):802–808. doi: 10.1126/science.1902986. [DOI] [PubMed] [Google Scholar]
  32. Spielman A. I., Huque T., Whitney G., Brand J. G. The diversity of bitter taste signal transduction mechanisms. Soc Gen Physiol Ser. 1992;47:307–324. [PubMed] [Google Scholar]
  33. Striem B. J., Naim M., Zehavi U., Ronen T. Saccharin induces changes in adenylate cyclase activity in liver and muscle membranes in rats. Life Sci. 1990;46(11):803–810. doi: 10.1016/0024-3205(90)90068-3. [DOI] [PubMed] [Google Scholar]
  34. Striem B. J., Pace U., Zehavi U., Naim M., Lancet D. Sweet tastants stimulate adenylate cyclase coupled to GTP-binding protein in rat tongue membranes. Biochem J. 1989 May 15;260(1):121–126. doi: 10.1042/bj2600121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tancredi T., Iijima H., Saviano G., Amodeo P., Temussi P. A. Structural determination of the active site of a sweet protein. A 1H NMR investigation of pMNEI. FEBS Lett. 1992 Sep 21;310(1):27–30. doi: 10.1016/0014-5793(92)81138-c. [DOI] [PubMed] [Google Scholar]
  36. Tomita U., Takahashi K., Ikenaka K., Kondo T., Fujimoto I., Aimoto S., Mikoshiba K., Ui M., Katada T. Direct activation of GTP-binding proteins by venom peptides that contain cationic clusters within their alpha-helical structures. Biochem Biophys Res Commun. 1991 Jul 15;178(1):400–406. doi: 10.1016/0006-291x(91)91827-y. [DOI] [PubMed] [Google Scholar]
  37. Wenzel-Seifert K., Seifert R. Cyclosporin H is a potent and selective formyl peptide receptor antagonist. Comparison with N-t-butoxycarbonyl-L-phenylalanyl-L-leucyl-L-phenylalanyl-L- leucyl-L-phenylalanine and cyclosporins A, B, C, D, and E. J Immunol. 1993 May 15;150(10):4591–4599. [PubMed] [Google Scholar]
  38. Wieland T., Kreiss J., Gierschik P., Jakobs K. H. Role of GDP in formyl-peptide-receptor-induced activation of guanine-nucleotide-binding proteins in membranes of HL 60 cells. Eur J Biochem. 1992 May 1;205(3):1201–1206. doi: 10.1111/j.1432-1033.1992.tb16891.x. [DOI] [PubMed] [Google Scholar]
  39. Wieland T., Ulibarri I., Gierschik P., Jakobs K. H. Activation of signal-transducing guanine-nucleotide-binding regulatory proteins by guanosine 5'-[gamma-thio]triphosphate. Information transfer by intermediately thiophosphorylated beta gamma subunits. Eur J Biochem. 1991 Mar 28;196(3):707–716. doi: 10.1111/j.1432-1033.1991.tb15869.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES