Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Mar 1;298(Pt 2):269–273. doi: 10.1042/bj2980269

Rapid turnover of phosphatidylinositol 3-phosphate in the green alga Chlamydomonas eugametos: signs of a phosphatidylinositide 3-kinase signalling pathway in lower plants?

T Munnik 1, R F Irvine 1, A Musgrave 1
PMCID: PMC1137935  PMID: 8135730

Abstract

When Chlamydomonas eugametos gametes were incubated in carrier-free [32P]P1, the label was rapidly incorporated into PtdInsP and PtdInsP2 and, after reaching a maximum within minutes, was chased out by recirculating unlabelled P1 in the cell. This pulse-chase labelling pattern reflects their rapid turnover. In contrast, 32P incorporation into the structural lipids was slow and continued for hours. Of the radioactivity in the PtdInsP spot, 15% was in PtdIns3P and the rest in PtdIns4P, and of that in the PtdInsP2 spot, 1% was in PtdIns(3,4)P2 and the rest in PtdIns(4,5)P2, confirming the findings by Irvine, Letcher, Stephens and Musgrave [(1992) Biochem. J. 281, 269-266]. When cells were labelled with carrier-free [32P]P1, both PtdInsP isomers incorporated label in a pulse-chase-type pattern, demonstrating for the first time in a plant or animal system that D-3 poly-phosphoinositides turn over rapidly in non-stimulated cells, with kinetics similar to those shown by the D-4 isomers. In animal systems such lipids are already established as signalling molecules, and the data suggest that a similar role must be sought for them in lower plants such as Chlamydomonas.

Full text

PDF
272

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auger K. R., Carpenter C. L., Cantley L. C., Varticovski L. Phosphatidylinositol 3-kinase and its novel product, phosphatidylinositol 3-phosphate, are present in Saccharomyces cerevisiae. J Biol Chem. 1989 Dec 5;264(34):20181–20184. [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Brearley C. A., Hanke D. E. 3- and 4-phosphorylated phosphatidylinositols in the aquatic plant Spirodela polyrhiza L. Biochem J. 1992 Apr 1;283(Pt 1):255–260. doi: 10.1042/bj2830255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brearley C. A., Hanke D. E. Pathway of synthesis of 3,4- and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza L. Biochem J. 1993 Feb 15;290(Pt 1):145–150. doi: 10.1042/bj2900145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clarke N. G., Dawson R. M. Alkaline O leads to N-transacylation. A new method for the quantitative deacylation of phospholipids. Biochem J. 1981 Apr 1;195(1):301–306. doi: 10.1042/bj1950301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cunningham T. W., Lips D. L., Bansal V. S., Caldwell K. K., Mitchell C. A., Majerus P. W. Pathway for the formation of D-3 phosphate containing inositol phospholipids in intact human platelets. J Biol Chem. 1990 Dec 15;265(35):21676–21683. [PubMed] [Google Scholar]
  7. Downes C. P., Carter A. N. Phosphoinositide 3-kinase: a new effector in signal transduction? Cell Signal. 1991;3(6):501–513. doi: 10.1016/0898-6568(91)90027-r. [DOI] [PubMed] [Google Scholar]
  8. Drobak B. K. Plant Phosphoinositides and Intracellular Signaling. Plant Physiol. 1993 Jul;102(3):705–709. doi: 10.1104/pp.102.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drøbak B. K. The plant phosphoinositide system. Biochem J. 1992 Dec 15;288(Pt 3):697–712. doi: 10.1042/bj2880697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fry M. J., Waterfield M. D. Structure and function of phosphatidylinositol 3-kinase: a potential second messenger system involved in growth control. Philos Trans R Soc Lond B Biol Sci. 1993 Jun 29;340(1293):337–344. doi: 10.1098/rstb.1993.0076. [DOI] [PubMed] [Google Scholar]
  11. Gaudette D. C., Aukema H. M., Jolly C. A., Chapkin R. S., Holub B. J. Mass and fatty acid composition of the 3-phosphorylated phosphatidylinositol bisphosphate isomer in stimulated human platelets. J Biol Chem. 1993 Jul 5;268(19):13773–13776. [PubMed] [Google Scholar]
  12. Hawkins P. T., Jackson T. R., Stephens L. R. Platelet-derived growth factor stimulates synthesis of PtdIns(3,4,5)P3 by activating a PtdIns(4,5)P2 3-OH kinase. Nature. 1992 Jul 9;358(6382):157–159. doi: 10.1038/358157a0. [DOI] [PubMed] [Google Scholar]
  13. Hawkins P. T., Stephens L. R., Piggott J. R. Analysis of inositol metabolites produced by Saccharomyces cerevisiae in response to glucose stimulation. J Biol Chem. 1993 Feb 15;268(5):3374–3383. [PubMed] [Google Scholar]
  14. Herman P. K., Stack J. H., Emr S. D. An essential role for a protein and lipid kinase complex in secretory protein sorting. Trends Cell Biol. 1992 Dec;2(12):363–368. doi: 10.1016/0962-8924(92)90048-r. [DOI] [PubMed] [Google Scholar]
  15. Irvine R. F. Inositol lipids in cell signalling. Curr Opin Cell Biol. 1992 Apr;4(2):212–219. doi: 10.1016/0955-0674(92)90035-b. [DOI] [PubMed] [Google Scholar]
  16. Irvine R. F., Letcher A. J., Lander D. J., Drøbak B. K., Dawson A. P., Musgrave A. Phosphatidylinositol(4,5)bisphosphate and Phosphatidylinositol(4)phosphate in Plant Tissues. Plant Physiol. 1989 Mar;89(3):888–892. doi: 10.1104/pp.89.3.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Irvine R. F., Letcher A. J., Stephens L. R., Musgrave A. Inositol polyphosphate metabolism and inositol lipids in a green alga, Chlamydomonas eugametos. Biochem J. 1992 Jan 1;281(Pt 1):261–266. doi: 10.1042/bj2810261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jackson T. R., Stephens L. R., Hawkins P. T. Receptor specificity of growth factor-stimulated synthesis of 3-phosphorylated inositol lipids in Swiss 3T3 cells. J Biol Chem. 1992 Aug 15;267(23):16627–16636. [PubMed] [Google Scholar]
  19. Kunz J., Henriquez R., Schneider U., Deuter-Reinhard M., Movva N. R., Hall M. N. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993 May 7;73(3):585–596. doi: 10.1016/0092-8674(93)90144-f. [DOI] [PubMed] [Google Scholar]
  20. Panayotou G., Waterfield M. D. Phosphatidyl-inositol 3-kinase: a key enzyme in diverse signalling processes. Trends Cell Biol. 1992 Dec;2(12):358–360. doi: 10.1016/0962-8924(92)90042-l. [DOI] [PubMed] [Google Scholar]
  21. Pignataro O. P., Ascoli M. Epidermal growth factor increases the labeling of phosphatidylinositol 3,4-bisphosphate in MA-10 Leydig tumor cells. J Biol Chem. 1990 Jan 25;265(3):1718–1723. [PubMed] [Google Scholar]
  22. Quarmby L. M., Yueh Y. G., Cheshire J. L., Keller L. R., Snell W. J., Crain R. C. Inositol phospholipid metabolism may trigger flagellar excision in Chlamydomonas reinhardtii. J Cell Biol. 1992 Feb;116(3):737–744. doi: 10.1083/jcb.116.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schu P. V., Takegawa K., Fry M. J., Stack J. H., Waterfield M. D., Emr S. D. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science. 1993 Apr 2;260(5104):88–91. doi: 10.1126/science.8385367. [DOI] [PubMed] [Google Scholar]
  24. Stack J. H., Herman P. K., Schu P. V., Emr S. D. A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J. 1993 May;12(5):2195–2204. doi: 10.1002/j.1460-2075.1993.tb05867.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stephens L. R., Hughes K. T., Irvine R. F. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature. 1991 May 2;351(6321):33–39. doi: 10.1038/351033a0. [DOI] [PubMed] [Google Scholar]
  26. Stephens L. R., Jackson T. R., Hawkins P. T. Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta. 1993 Oct 7;1179(1):27–75. doi: 10.1016/0167-4889(93)90072-w. [DOI] [PubMed] [Google Scholar]
  27. Stephens L., Eguinoa A., Corey S., Jackson T., Hawkins P. T. Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeloid derived cells. EMBO J. 1993 Jun;12(6):2265–2273. doi: 10.1002/j.1460-2075.1993.tb05880.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trewavas A., Gilroy S. Signal transduction in plant cells. Trends Genet. 1991 Nov-Dec;7(11-12):356–361. doi: 10.1016/0168-9525(91)90255-o. [DOI] [PubMed] [Google Scholar]
  29. Walsh J. P., Caldwell K. K., Majerus P. W. Formation of phosphatidylinositol 3-phosphate by isomerization from phosphatidylinositol 4-phosphate. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9184–9187. doi: 10.1073/pnas.88.20.9184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Whitman M., Downes C. P., Keeler M., Keller T., Cantley L. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988 Apr 14;332(6165):644–646. doi: 10.1038/332644a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES