Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 May 15;300(Pt 1):141–145. doi: 10.1042/bj3000141

Synthesis, purification and kinetic properties of fluorescein-labelled penicillins.

B Lakaye 1, C Damblon 1, M Jamin 1, M Galleni 1, S Lepage 1, B Joris 1, J Marchand-Brynaert 1, C Frydrych 1, J M Frere 1
PMCID: PMC1138135  PMID: 8198525

Abstract

The synthesis and properties of six fluorescein-labelled penicillins are reported. The two isomers of fluoresceyl-glycyl-6-amino-penicillanic acid are probably the best compounds to use for detection of all the penicillin-binding proteins (PBPs) present in a bacterial membrane preparation. However, the derivatives of ampicillin were much more efficient against Enterobacter aerogenes PBP3. The two isomers obtained when a commercial mixture of the two isomers of carboxyfluorescein was used most often exhibited similar properties, but the Streptomyces R61 extracellular DD-peptidase was only efficiently acylated by the 5'-carboxyfluorescein derivative of glycyl-6-aminopenicillanic acid.

Full text

PDF
143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellido F., Veuthey C., Blaser J., Bauernfeind A., Pechère J. C. Novel resistance to imipenem associated with an altered PBP-4 in a Pseudomonas aeruginosa clinical isolate. J Antimicrob Chemother. 1990 Jan;25(1):57–68. doi: 10.1093/jac/25.1.57. [DOI] [PubMed] [Google Scholar]
  2. Curtis N. A., Eisenstadt R. L., Rudd C., White A. J. Inducible type I beta-lactamases of gram-negative bacteria and resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1986 Jan;17(1):51–61. doi: 10.1093/jac/17.1.51. [DOI] [PubMed] [Google Scholar]
  3. Curtis N. A., Orr D., Ross G. W., Boulton M. G. Affinities of penicillins and cephalosporins for the penicillin-binding proteins of Escherichia coli K-12 and their antibacterial activity. Antimicrob Agents Chemother. 1979 Nov;16(5):533–539. doi: 10.1128/aac.16.5.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Meester F., Joris B., Reckinger G., Bellefroid-Bourguignon C., Frère J. M., Waley S. G. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem Pharmacol. 1987 Jul 15;36(14):2393–2403. doi: 10.1016/0006-2952(87)90609-5. [DOI] [PubMed] [Google Scholar]
  5. Frère J. M., Ghuysen J. M., Iwatsubo M. Kinetics of interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61 and beta-lactam antibiotics. A choice of models. Eur J Biochem. 1975 Sep 15;57(2):343–351. doi: 10.1111/j.1432-1033.1975.tb02307.x. [DOI] [PubMed] [Google Scholar]
  6. Frère J. M., Joris B. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. Crit Rev Microbiol. 1985;11(4):299–396. doi: 10.3109/10408418409105906. [DOI] [PubMed] [Google Scholar]
  7. Frère J. M., Leyh-Bouille M., Ghuysen J. M., Perkins H. R. Interaction between beta-lactam antibiotics and exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R61. Eur J Biochem. 1974 Dec 16;50(1):203–214. doi: 10.1111/j.1432-1033.1974.tb03889.x. [DOI] [PubMed] [Google Scholar]
  8. Frère J. M., Moreno R., Ghuysen J. M. Molecular weight, amino acid composition and physicochemical properties of the exocellular DD-carboxypeptidase-transpeptidase of Streptomyces R39. Biochem J. 1974 Oct;143(1):233–240. doi: 10.1042/bj1430233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Galleni M., Lakaye B., Lepage S., Jamin M., Thamm I., Joris B., Frère J. M. A new, highly sensitive method for the detection and quantification of penicillin-binding proteins. Biochem J. 1993 Apr 1;291(Pt 1):19–21. doi: 10.1042/bj2910019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hadonou A. M., Jamin M., Adam M., Joris B., Dusart J., Ghuysen J. M., Frère J. M. Importance of the His-298 residue in the catalytic mechanism of the Streptomyces R61 extracellular DD-peptidase. Biochem J. 1992 Mar 1;282(Pt 2):495–500. doi: 10.1042/bj2820495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jamin M., Damblon C., Millier S., Hakenbeck R., Frère J. M. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with beta-lactams. Biochem J. 1993 Jun 15;292(Pt 3):735–741. doi: 10.1042/bj2920735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jamin M., Hakenbeck R., Frere J. M. Penicillin binding protein 2x as a major contributor to intrinsic beta-lactam resistance of Streptococcus pneumoniae. FEBS Lett. 1993 Sep 27;331(1-2):101–104. doi: 10.1016/0014-5793(93)80305-e. [DOI] [PubMed] [Google Scholar]
  13. Kelly J. A., Frère J. M., Klein D., Ghuysen J. M. Interaction between non-classical beta-lactam compounds and the Zn2+-containing G and serine R61 and R39 D-alanyl-D-alanine peptidases. Biochem J. 1981 Oct 1;199(1):129–136. doi: 10.1042/bj1990129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laible G., Spratt B. G., Hakenbeck R. Interspecies recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Microbiol. 1991 Aug;5(8):1993–2002. doi: 10.1111/j.1365-2958.1991.tb00821.x. [DOI] [PubMed] [Google Scholar]
  15. Linström E. B., Boman H. G., Steele B. B. Resistance of Escherichia coli to penicillins. VI. Purification and characterization of the chromosomally mediated penicillinase present in ampA-containing strains. J Bacteriol. 1970 Jan;101(1):218–231. doi: 10.1128/jb.101.1.218-231.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nieto M., Perkins H. R., Frère J. M., Ghuysen J. M. Fluorescence and circular dichroism studies on the Streptomyces R61 DD-carboxypeptidase-transpeptidase. Penicillin binding by the enzyme. Biochem J. 1973 Nov;135(3):493–505. doi: 10.1042/bj1350493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Piras G., el Kharroubi A., van Beeumen J., Coeme E., Coyette J., Ghuysen J. M. Characterization of an Enterococcus hirae penicillin-binding protein 3 with low penicillin affinity. J Bacteriol. 1990 Dec;172(12):6856–6862. doi: 10.1128/jb.172.12.6856-6862.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Spratt B. G., Pardee A. B. Penicillin-binding proteins and cell shape in E. coli. Nature. 1975 Apr 10;254(5500):516–517. doi: 10.1038/254516a0. [DOI] [PubMed] [Google Scholar]
  19. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  20. Varetto L., Frère J. M., Nguyen-Distèche M., Ghuysen J. M., Houssier C. The pH dependence of the active-site serine DD-peptidase of Streptomyces R61. Eur J Biochem. 1987 Feb 2;162(3):525–531. doi: 10.1111/j.1432-1033.1987.tb10671.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES