Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321

Regulatory and molecular aspects of mammalian amino acid transport.

J D McGivan 1, M Pastor-Anglada 1
PMCID: PMC1138275  PMID: 8172590

Full text

PDF
321

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albritton L. M., Kim J. W., Tseng L., Cunningham J. M. Envelope-binding domain in the cationic amino acid transporter determines the host range of ecotropic murine retroviruses. J Virol. 1993 Apr;67(4):2091–2096. doi: 10.1128/jvi.67.4.2091-2096.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albritton L. M., Tseng L., Scadden D., Cunningham J. M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell. 1989 May 19;57(4):659–666. doi: 10.1016/0092-8674(89)90134-7. [DOI] [PubMed] [Google Scholar]
  3. Amara S. G., Pacholczyk T. Sodium-dependent neurotransmitter reuptake systems. Curr Opin Neurobiol. 1991 Jun;1(1):84–90. doi: 10.1016/0959-4388(91)90014-x. [DOI] [PubMed] [Google Scholar]
  4. Amsler K., Shaffer C., Cook J. S. Growth-dependent AIB and meAIB uptake in LLC-PK1 cells: effects of differentiation inducers and of TPA. J Cell Physiol. 1983 Feb;114(2):184–190. doi: 10.1002/jcp.1041140207. [DOI] [PubMed] [Google Scholar]
  5. Aoshima H., Tomita K., Sugio S. Expression of amino acid transport systems in Xenopus oocytes injected with mRNA of rat small intestine and kidney. Arch Biochem Biophys. 1988 Aug 15;265(1):73–81. doi: 10.1016/0003-9861(88)90372-4. [DOI] [PubMed] [Google Scholar]
  6. Arriza J. L., Kavanaugh M. P., Fairman W. A., Wu Y. N., Murdoch G. H., North R. A., Amara S. G. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J Biol Chem. 1993 Jul 25;268(21):15329–15332. [PubMed] [Google Scholar]
  7. Attali B., Guillemare E., Lesage F., Honoré E., Romey G., Lazdunski M., Barhanin J. The protein IsK is a dual activator of K+ and Cl- channels. Nature. 1993 Oct 28;365(6449):850–852. doi: 10.1038/365850a0. [DOI] [PubMed] [Google Scholar]
  8. Auberger P., Samson M., Le Cam G., Le Cam A. Effects of polyamines on cyclic AMP-mediated stimulation of amino acid transport in isolated rat hepatocytes. J Cell Physiol. 1983 Nov;117(2):204–210. doi: 10.1002/jcp.1041170211. [DOI] [PubMed] [Google Scholar]
  9. Banderali U., Roy G. Anion channels for amino acids in MDCK cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1200–C1207. doi: 10.1152/ajpcell.1992.263.6.C1200. [DOI] [PubMed] [Google Scholar]
  10. Baquet A., Hue L., Meijer A. J., van Woerkom G. M., Plomp P. J. Swelling of rat hepatocytes stimulates glycogen synthesis. J Biol Chem. 1990 Jan 15;265(2):955–959. [PubMed] [Google Scholar]
  11. Barber E. F., Handlogten M. E., Vida T. A., Kilberg M. S. Neutral amino acid transport in hepatocytes isolated from streptozotocin-induced diabetic rats. J Biol Chem. 1982 Dec 25;257(24):14960–14967. [PubMed] [Google Scholar]
  12. Bass R., Hedegaard H. B., Dillehay L., Moffett J., Englesberg E. The A, ASC, and L systems for the transport of amino acids in Chinese hamster ovary cells (CHO-K1). J Biol Chem. 1981 Oct 25;256(20):10259–10266. [PubMed] [Google Scholar]
  13. Bellemann P. Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats. Biochem J. 1981 Sep 15;198(3):475–483. doi: 10.1042/bj1980475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bertran J., Magagnin S., Werner A., Markovich D., Biber J., Testar X., Zorzano A., Kühn L. C., Palacin M., Murer H. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5606–5610. doi: 10.1073/pnas.89.12.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Blostein R., Grafova E. Characteristics of membrane transport losses during reticulocyte maturation. Biochem Cell Biol. 1987 Oct;65(10):869–875. doi: 10.1139/o87-113. [DOI] [PubMed] [Google Scholar]
  17. Bode B. P., Kilberg M. S. Amino acid-dependent increase in hepatic system N activity is linked to cell swelling. J Biol Chem. 1991 Apr 25;266(12):7376–7381. [PubMed] [Google Scholar]
  18. Boerner P., Saier M. H., Jr Growth regulation and amino acid transport in epithelial cells: influence of culture conditions and transformation on A, ASC, and L transport activities. J Cell Physiol. 1982 Nov;113(2):240–246. doi: 10.1002/jcp.1041130209. [DOI] [PubMed] [Google Scholar]
  19. Borgese F., Sardet C., Cappadoro M., Pouyssegur J., Motais R. Cloning and expression of a cAMP-activated Na+/H+ exchanger: evidence that the cytoplasmic domain mediates hormonal regulation. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6765–6769. doi: 10.1073/pnas.89.15.6765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Borghetti A. F., Piedimonte G., Tramacere M., Severini A., Ghiringhelli P., Guidotti G. G. Cell density and amino acid transport in 3T3, SV3T3, and SV3T3 revertant cells. J Cell Physiol. 1980 Oct;105(1):39–49. doi: 10.1002/jcp.1041050107. [DOI] [PubMed] [Google Scholar]
  21. Bourdel G., Forestier M., Gouhot B. Na(+)-dependent transport of alanine and serine by liver plasma-membrane vesicles from rats fed a low-protein or a high-protein diet. Biochim Biophys Acta. 1990 Jul 9;1026(1):1–12. doi: 10.1016/0005-2736(90)90325-i. [DOI] [PubMed] [Google Scholar]
  22. Bracy D. S., Handlogten M. E., Barber E. F., Han H. P., Kilberg M. S. Cis-inhibition, trans-inhibition, and repression of hepatic amino acid transport mediated by System A. Substrate specificity and other properties. J Biol Chem. 1986 Feb 5;261(4):1514–1520. [PubMed] [Google Scholar]
  23. Bracy D. S., Schenerman M. A., Kilberg M. S. Solubilization and reconstitution of hepatic System A-mediated amino acid transport. Preparation of proteoliposomes containing glucagon-stimulated transport activity. Biochim Biophys Acta. 1987 May 12;899(1):51–58. doi: 10.1016/0005-2736(87)90238-0. [DOI] [PubMed] [Google Scholar]
  24. Béliveau R., Demeule M., Jetté M., Potier M. Molecular sizes of amino acid transporters in the luminal membrane from the kidney cortex, estimated by the radiation-inactivation method. Biochem J. 1990 May 15;268(1):195–200. doi: 10.1042/bj2680195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Canivet B., Fehlmann M., Freychet P. Glucocorticoid and catecholamine stimulation of amino acid transport in rat hepatocytes. Synthesis of a high-affinity component. Mol Cell Endocrinol. 1980 Sep;19(3):253–261. doi: 10.1016/0303-7207(80)90055-6. [DOI] [PubMed] [Google Scholar]
  26. Cantiello H. F., Stow J. L., Prat A. G., Ausiello D. A. Actin filaments regulate epithelial Na+ channel activity. Am J Physiol. 1991 Nov;261(5 Pt 1):C882–C888. doi: 10.1152/ajpcell.1991.261.5.C882. [DOI] [PubMed] [Google Scholar]
  27. Cariappa R., Kilberg M. S. Hormone-induced system A amino acid transport activity in rat liver plasma membrane and Golgi vesicles. Evidence for a differential sensitivity to inactivation by N-ethylmaleimide during carrier maturation. J Biol Chem. 1990 Jan 25;265(3):1470–1475. [PubMed] [Google Scholar]
  28. Cariappa R., Kilberg M. S. Plasma membrane domain localization and transcytosis of the glucagon-induced hepatic system A carrier. Am J Physiol. 1992 Dec;263(6 Pt 1):E1021–E1028. doi: 10.1152/ajpendo.2006.263.6.E1021. [DOI] [PubMed] [Google Scholar]
  29. Casado J., Pastor-Anglada M., Remesar X. Hepatic uptake of amino acids at mid-lactation in the rat. Biochem J. 1987 Jul 1;245(1):297–300. doi: 10.1042/bj2450297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Casado J., Remesar X., Pastor-Anglada M. Hepatic uptake of amino acids in late-pregnant rats. Effect of food deprivation. Biochem J. 1987 Nov 15;248(1):117–122. doi: 10.1042/bj2480117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Chiles T. C., Kilberg M. S. System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents. J Cell Physiol. 1986 Dec;129(3):321–328. doi: 10.1002/jcp.1041290309. [DOI] [PubMed] [Google Scholar]
  32. Christensen H. N., Liang M., Archer E. G. A distinct Na+-requiring transport system for alanine, serine, cysteine, and similar amino acids. J Biol Chem. 1967 Nov 25;242(22):5237–5246. [PubMed] [Google Scholar]
  33. Christensen H. N. On the strategy of kinetic discrimination of amino acid transport systems. J Membr Biol. 1985;84(2):97–103. doi: 10.1007/BF01872207. [DOI] [PubMed] [Google Scholar]
  34. Christensen H. N., Oxender D. L., Liang M., Vatz K. A. The use of N-methylation to direct route of mediated transport of amino acids. J Biol Chem. 1965 Sep;240(9):3609–3616. [PubMed] [Google Scholar]
  35. Christensen H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990 Jan;70(1):43–77. doi: 10.1152/physrev.1990.70.1.43. [DOI] [PubMed] [Google Scholar]
  36. Closs E. I., Albritton L. M., Kim J. W., Cunningham J. M. Identification of a low affinity, high capacity transporter of cationic amino acids in mouse liver. J Biol Chem. 1993 Apr 5;268(10):7538–7544. [PubMed] [Google Scholar]
  37. Closs E. I., Borel Rinkes I. H., Bader A., Yarmush M. L., Cunningham J. M. Retroviral infection and expression of cationic amino acid transporters in rodent hepatocytes. J Virol. 1993 Apr;67(4):2097–2102. doi: 10.1128/jvi.67.4.2097-2102.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Coady M. J., Pajor A. M., Toloza E. M., Wright E. M. Expression of mammalian renal transporters in Xenopus laevis oocytes. Arch Biochem Biophys. 1990 Nov 15;283(1):130–134. doi: 10.1016/0003-9861(90)90622-6. [DOI] [PubMed] [Google Scholar]
  39. Cohen B. J., Lechene C. Alanine stimulation of passive potassium efflux in hepatocytes is independent of Na(+)-K+ pump activity. Am J Physiol. 1990 Jan;258(1 Pt 1):C24–C29. doi: 10.1152/ajpcell.1990.258.1.C24. [DOI] [PubMed] [Google Scholar]
  40. Cornet M., Ubl J., Kolb H. A. Cytoskeleton and ion movements during volume regulation in cultured PC12 cells. J Membr Biol. 1993 Apr;133(2):161–170. doi: 10.1007/BF00233796. [DOI] [PubMed] [Google Scholar]
  41. Dall'Asta V., Bussolati O., Guidotti G. G., Gazzola G. C. Energization of amino acid uptake by system A in cultured human fibroblasts. J Biol Chem. 1991 Jan 25;266(3):1591–1596. [PubMed] [Google Scholar]
  42. Dall'Asta V., Gazzola G. C., Franchi-Gazzola R., Bussolati O., Longo N., Guidotti G. G. Pathways of L-glutamic acid transport in cultured human fibroblasts. J Biol Chem. 1983 May 25;258(10):6371–6379. [PubMed] [Google Scholar]
  43. Danbolt N. C., Pines G., Kanner B. I. Purification and reconstitution of the sodium- and potassium-coupled glutamate transport glycoprotein from rat brain. Biochemistry. 1990 Jul 17;29(28):6734–6740. doi: 10.1021/bi00480a025. [DOI] [PubMed] [Google Scholar]
  44. Davis J. Q., Bennett V. The anion exchanger and Na+K(+)-ATPase interact with distinct sites on ankyrin in in vitro assays. J Biol Chem. 1990 Oct 5;265(28):17252–17256. [PubMed] [Google Scholar]
  45. Dolais-Kitabgi J., Rey J. F., Fehlmann M., Morin O., Freychet P. Effect of insulin and glucagon on amino acid transport in isolated hepatocytes after partial hepatectomy in the rat. Endocrinology. 1981 Sep;109(3):868–875. doi: 10.1210/endo-109-3-868. [DOI] [PubMed] [Google Scholar]
  46. Dorio R. J., Hoek J. B., Rubin E. Ethanol treatment selectively decreases neutral amino acid transport in cultured hepatocytes. J Biol Chem. 1984 Sep 25;259(18):11430–11435. [PubMed] [Google Scholar]
  47. Doyle F. A., McGivan J. D. Reconstitution and identification of the major Na(+)-dependent neutral amino acid-transport protein from bovine renal brush-border membrane vesicles. Biochem J. 1992 Jan 1;281(Pt 1):95–102. doi: 10.1042/bj2810095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Doyle F. A., McGivan J. D. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles. Biochim Biophys Acta. 1992 Feb 17;1104(1):55–62. doi: 10.1016/0005-2736(92)90131-5. [DOI] [PubMed] [Google Scholar]
  49. Dudeck K. L., Dudenhausen E. E., Chiles T. C., Fafournoux P., Kilberg M. S. Evidence for inherent differences in the system A carrier from normal and transformed liver tissue. Differential inactivation and substrate protection in membrane vesicles and reconstituted proteoliposomes. J Biol Chem. 1987 Sep 15;262(26):12565–12569. [PubMed] [Google Scholar]
  50. Eavenson E., Christensen H. N. Transport systems for neutral amino acids in the pigeon erythrocyte. J Biol Chem. 1967 Nov 25;242(22):5386–5396. [PubMed] [Google Scholar]
  51. Eddy A. A. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Biochem J. 1968 Jun;108(2):195–206. doi: 10.1042/bj1080195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Edmondson J. W., Lumeng L. Biphasic stimulation of amino acid uptake by glucagon in hepatocytes. Biochem Biophys Res Commun. 1980 Sep 16;96(1):61–68. doi: 10.1016/0006-291x(80)91181-x. [DOI] [PubMed] [Google Scholar]
  53. Englesberg E., Moffett J. A genetic approach to the study of neutral amino acid transport in mammalian cells in culture. J Membr Biol. 1986;91(3):199–212. doi: 10.1007/BF01868814. [DOI] [PubMed] [Google Scholar]
  54. Fafournoux P., Dudenhausen E. E., Kilberg M. S. Solubilization and reconstitution characteristics of hepatic system A-mediated amino acid transport. J Biol Chem. 1989 Mar 25;264(9):4805–4811. [PubMed] [Google Scholar]
  55. Fafournoux P., Rémésy C., Demigné C. Control by amino acids of the activity of system A-mediated amino acid transport in isolated rat hepatocytes. Biochem J. 1985 Oct 15;231(2):315–320. doi: 10.1042/bj2310315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Fafournoux P., Rémésy C., Demigné C. Control of alanine metabolism in rat liver by transport processes or cellular metabolism. Biochem J. 1983 Mar 15;210(3):645–652. doi: 10.1042/bj2100645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Fehlmann M., Le Cam A., Freychet P. Insulin and glucagon stimulation of amino acid transport in isolated rat hepatocytes. Synthesis of a high affinity component of transport. J Biol Chem. 1979 Oct 25;254(20):10431–10437. [PubMed] [Google Scholar]
  58. Fehlmann M., Le Cam A., Kitabgi P., Rey J. F., Freychet P. Regulation of amino acid transport in the liver. Emergence of a high affinity transport system in isolated hepatocytes from fasting rats. J Biol Chem. 1979 Jan 25;254(2):401–407. [PubMed] [Google Scholar]
  59. Felipe A., Remesar X., Pastor-Anglada M. Alanine uptake by liver of mid-lactating rats. Metabolism. 1993 Sep;42(9):1109–1115. doi: 10.1016/0026-0495(93)90267-r. [DOI] [PubMed] [Google Scholar]
  60. Felipe A., Remesar X., Pastor-Anglada M. Na+-dependent alanine transport in plasma membrane vesicles from late-pregnant rat livers. Pediatr Res. 1989 Nov;26(5):448–451. doi: 10.1203/00006450-198911000-00017. [DOI] [PubMed] [Google Scholar]
  61. Ferkany J., Coyle J. T. Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. J Neurosci Res. 1986;16(3):491–503. doi: 10.1002/jnr.490160305. [DOI] [PubMed] [Google Scholar]
  62. Foster D. O., Pardee A. B. Transport of amino acids by confluent and nonconfluent 3T3 and polyoma virus-transformed 3T3 cells growing on glass cover slips. J Biol Chem. 1969 May 25;244(10):2675–2681. [PubMed] [Google Scholar]
  63. Fowler F. C., Banks R. K., Mailliard M. E. Characterization of sodium-dependent amino acid transport activity during liver regeneration. Hepatology. 1992 Nov;16(5):1187–1194. [PubMed] [Google Scholar]
  64. Fremeau R. T., Jr, Caron M. G., Blakely R. D. Molecular cloning and expression of a high affinity L-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron. 1992 May;8(5):915–926. doi: 10.1016/0896-6273(92)90206-s. [DOI] [PubMed] [Google Scholar]
  65. Geck P., Heinz E. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked co-transport. Biochim Biophys Acta. 1976 Aug 4;443(1):49–63. doi: 10.1016/0005-2736(76)90490-9. [DOI] [PubMed] [Google Scholar]
  66. Giros B., el Mestikawy S., Bertrand L., Caron M. G. Cloning and functional characterization of a cocaine-sensitive dopamine transporter. FEBS Lett. 1991 Dec 16;295(1-3):149–154. doi: 10.1016/0014-5793(91)81406-x. [DOI] [PubMed] [Google Scholar]
  67. Graves J. S., Wheeler D. D. Increase in K+ and alpha-AIB active transport in CHO cells after low [K+] treatment. Am J Physiol. 1982 Sep;243(3):C124–C132. doi: 10.1152/ajpcell.1982.243.3.C124. [DOI] [PubMed] [Google Scholar]
  68. Gründer S., Thiemann A., Pusch M., Jentsch T. J. Regions involved in the opening of CIC-2 chloride channel by voltage and cell volume. Nature. 1992 Dec 24;360(6406):759–762. doi: 10.1038/360759a0. [DOI] [PubMed] [Google Scholar]
  69. Guastella J., Brecha N., Weigmann C., Lester H. A., Davidson N. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7189–7193. doi: 10.1073/pnas.89.15.7189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., Davidson N., Lester H. A., Kanner B. I. Cloning and expression of a rat brain GABA transporter. Science. 1990 Sep 14;249(4974):1303–1306. doi: 10.1126/science.1975955. [DOI] [PubMed] [Google Scholar]
  71. Gumà A., Castelló A., Testar X., Palacín M., Zorzano A. Differential sensitivity of insulin- and adaptive-regulation-induced system A activation to microtubular function in skeletal muscle. Biochem J. 1992 Jan 15;281(Pt 2):407–411. doi: 10.1042/bj2810407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Handlogten M. E., Kilberg M. S. Growth-dependent regulation of system A in SV40-transformed fetal rat hepatocytes. Am J Physiol. 1988 Sep;255(3 Pt 1):C261–C270. doi: 10.1152/ajpcell.1988.255.3.C261. [DOI] [PubMed] [Google Scholar]
  73. Handlogten M. E., Kilberg M. S. Induction and decay of amino acid transport in the liver. Turnover of transport activity in isolated hepatocytes after stimulation by diabetes or glucagon. J Biol Chem. 1984 Mar 25;259(6):3519–3525. [PubMed] [Google Scholar]
  74. Handlogten M. E., Kilberg M. S. Transport system a is not responsive to hormonal stimulation in primary cultures of fetal rat hepatocytes. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1113–1119. doi: 10.1016/0006-291x(82)92115-5. [DOI] [PubMed] [Google Scholar]
  75. Hayes M. R., McGivan J. D. Differential effects of starvation on alanine and glutamine transport in isolated rat hepatocytes. Biochem J. 1982 Apr 15;204(1):365–368. doi: 10.1042/bj2040365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
  77. Hitier Y., Champigny O., Bourdel G. Liver ornithine decarboxylase in pregnant rats fed two levels of casein. Am J Physiol. 1983 Jun;244(6):E548–E554. doi: 10.1152/ajpendo.1983.244.6.E548. [DOI] [PubMed] [Google Scholar]
  78. Hoffman B. J., Mezey E., Brownstein M. J. Cloning of a serotonin transporter affected by antidepressants. Science. 1991 Oct 25;254(5031):579–580. doi: 10.1126/science.1948036. [DOI] [PubMed] [Google Scholar]
  79. Hundal H. S., Rennie M. J., Watt P. W. Characteristics of L-glutamine transport in perfused rat skeletal muscle. J Physiol. 1987 Dec;393:283–305. doi: 10.1113/jphysiol.1987.sp016824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Häussinger D., Lang F., Bauers K., Gerok W. Interactions between glutamine metabolism and cell-volume regulation in perfused rat liver. Eur J Biochem. 1990 Mar 30;188(3):689–695. doi: 10.1111/j.1432-1033.1990.tb15451.x. [DOI] [PubMed] [Google Scholar]
  81. Johnson E., Eddy A. A. Effect of ouabain on amino acid uptake by mouse ascites-tumour cells in the presence of nigericin. Biochem J. 1985 Mar 15;226(3):773–779. doi: 10.1042/bj2260773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Johnson M. D., Ash J. F., Pauw P. G. Alterations in amino acid transport in Na,K-ATPase amplified HeLa cells. J Biol Chem. 1986 Jan 5;261(1):40–43. [PubMed] [Google Scholar]
  83. Joseph S. K., Bradford N. M., McGivan J. D. Characteristics of the transport of alanine, serine and glutamine across the plasma membrane of isolated rat liver cells. Biochem J. 1978 Dec 15;176(3):827–836. doi: 10.1042/bj1760827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Kanai Y., Hediger M. A. Primary structure and functional characterization of a high-affinity glutamate transporter. Nature. 1992 Dec 3;360(6403):467–471. doi: 10.1038/360467a0. [DOI] [PubMed] [Google Scholar]
  85. Kanai Y., Smith C. P., Hediger M. A. The elusive transporters with a high affinity for glutamate. Trends Neurosci. 1993 Sep;16(9):365–370. doi: 10.1016/0166-2236(93)90094-3. [DOI] [PubMed] [Google Scholar]
  86. Kanner B. I. Glutamate transporters from brain. A novel neurotransmitter transporter family. FEBS Lett. 1993 Jun 28;325(1-2):95–99. doi: 10.1016/0014-5793(93)81421-u. [DOI] [PubMed] [Google Scholar]
  87. Kilberg M. S. Amino acid transport in isolated rat hepatocytes. J Membr Biol. 1982;69(1):1–12. doi: 10.1007/BF01871236. [DOI] [PubMed] [Google Scholar]
  88. Kilberg M. S., Barber E. F., Handlogten M. E. Characteristics and hormonal regulation of amino acid transport system A in isolated rat hepatocytes. Curr Top Cell Regul. 1985;25:133–163. doi: 10.1016/b978-0-12-152825-6.50009-6. [DOI] [PubMed] [Google Scholar]
  89. Kilberg M. S., Handlogten M. E., Christensen H. N. Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem. 1980 May 10;255(9):4011–4019. [PubMed] [Google Scholar]
  90. Kilberg M. S. Measurement of amino acid transport by hepatocytes in suspension or monolayer culture. Methods Enzymol. 1989;173:564–575. doi: 10.1016/s0076-6879(89)73039-1. [DOI] [PubMed] [Google Scholar]
  91. Kilberg M. S., Stevens B. R., Novak D. A. Recent advances in mammalian amino acid transport. Annu Rev Nutr. 1993;13:137–165. doi: 10.1146/annurev.nu.13.070193.001033. [DOI] [PubMed] [Google Scholar]
  92. Kilty J. E., Lorang D., Amara S. G. Cloning and expression of a cocaine-sensitive rat dopamine transporter. Science. 1991 Oct 25;254(5031):578–579. doi: 10.1126/science.1948035. [DOI] [PubMed] [Google Scholar]
  93. Kim J. W., Closs E. I., Albritton L. M., Cunningham J. M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature. 1991 Aug 22;352(6337):725–728. doi: 10.1038/352725a0. [DOI] [PubMed] [Google Scholar]
  94. Klip A., Mack E., Cragoe E. J., Jr, Grinstein S. Regulation of amino acid uptake by phorbol esters and hypertonic solutions in rat thymocytes. J Cell Physiol. 1986 May;127(2):244–252. doi: 10.1002/jcp.1041270209. [DOI] [PubMed] [Google Scholar]
  95. Klöckner U., Storck T., Conradt M., Stoffel W. Electrogenic L-glutamate uptake in Xenopus laevis oocytes expressing a cloned rat brain L-glutamate/L-aspartate transporter (GLAST-1). J Biol Chem. 1993 Jul 15;268(20):14594–14596. [PubMed] [Google Scholar]
  96. Koepsell H., Korn K., Ferguson D., Menuhr H., Ollig D., Haase W. Reconstitution and partial purification of several Na+ cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes. J Biol Chem. 1984 May 25;259(10):6548–6558. [PubMed] [Google Scholar]
  97. Kong C. T., Yet S. F., Lever J. E. Cloning and expression of a mammalian Na+/amino acid cotransporter with sequence similarity to Na+/glucose cotransporters. J Biol Chem. 1993 Jan 25;268(3):1509–1512. [PubMed] [Google Scholar]
  98. Kristensen L. O. Associations between transports of alanine and cations across cell membrane in rat hepatocytes. Am J Physiol. 1986 Nov;251(5 Pt 1):G575–G584. doi: 10.1152/ajpgi.1986.251.5.G575. [DOI] [PubMed] [Google Scholar]
  99. Kristensen L. O. Energization of alanine transport in isolated rat hepatocytes. Electrogenic Na+-alanine co-transport leading to increased K+ permeability. J Biol Chem. 1980 Jun 10;255(11):5236–5243. [PubMed] [Google Scholar]
  100. Kristensen L. O., Sestoft L., Folke M. Concentrative uptake of alanine in hepatocytes from fed and fasted rats. Am J Physiol. 1983 May;244(5):G491–G500. doi: 10.1152/ajpgi.1983.244.5.G491. [DOI] [PubMed] [Google Scholar]
  101. Kwon H. M., Yamauchi A., Uchida S., Preston A. S., Garcia-Perez A., Burg M. B., Handler J. S. Cloning of the cDNa for a Na+/myo-inositol cotransporter, a hypertonicity stress protein. J Biol Chem. 1992 Mar 25;267(9):6297–6301. [PubMed] [Google Scholar]
  102. Kwon H. M., Yamauchi A., Uchida S., Robey R. B., Garcia-Perez A., Burg M. B., Handler J. S. Renal Na-myo-inositol cotransporter mRNA expression in Xenopus oocytes: regulation by hypertonicity. Am J Physiol. 1991 Feb;260(2 Pt 2):F258–F263. doi: 10.1152/ajprenal.1991.260.2.F258. [DOI] [PubMed] [Google Scholar]
  103. Le Cam A., Rey J. F., Fehlmann M., Kitabgi P., Freychet P. Amino acid transport in isolated hepatocytes after partial hepatectomy in the rat. Am J Physiol. 1979 Jun;236(6):E594–E602. doi: 10.1152/ajpendo.1979.236.6.E594. [DOI] [PubMed] [Google Scholar]
  104. Le Cam A., Rey J. F., Fehlmann M., Kitabgi P., Freychet P. Amino acid transport in isolated hepatocytes after partial hepatectomy in the rat. Am J Physiol. 1979 Jun;236(6):E594–E602. doi: 10.1152/ajpendo.1979.236.6.E594. [DOI] [PubMed] [Google Scholar]
  105. Leister K. J., Schenerman M. A., Racker E. Altered sensitivity of system A amino acid transport to ouabain in normal and transformed C3H-10T1/2 cells during the cell cycle. Proc Natl Acad Sci U S A. 1989 Feb;86(3):783–786. doi: 10.1073/pnas.86.3.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Leister K. J., Schenerman M. A., Racker E. Energetic mechanism of system A amino acid transport in normal and transformed mouse fibroblasts. J Cell Physiol. 1988 May;135(2):163–168. doi: 10.1002/jcp.1041350203. [DOI] [PubMed] [Google Scholar]
  107. Leoni S., Spagnuolo S., Dini L., Conti Devirgiliis L. Regulation of amino acid transport in isolated rat hepatocytes during development. J Cell Physiol. 1987 Jan;130(1):103–110. doi: 10.1002/jcp.1041300115. [DOI] [PubMed] [Google Scholar]
  108. Leoni S., Spagnuolo S., Massimi M., Conti Devirgiliis L. Epinephrine regulation of amino acid transport in rat hepatocytes isolated during development. Membr Biochem. 1990 Apr-Jun;9(2):117–128. doi: 10.3109/09687689009025834. [DOI] [PubMed] [Google Scholar]
  109. Lever J. E. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. J Biol Chem. 1977 Mar 25;252(6):1990–1997. [PubMed] [Google Scholar]
  110. Liu Q. R., López-Corcuera B., Nelson H., Mandiyan S., Nelson N. Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12145–12149. doi: 10.1073/pnas.89.24.12145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Liu Q. R., Nelson H., Mandiyan S., López-Corcuera B., Nelson N. Cloning and expression of a glycine transporter from mouse brain. FEBS Lett. 1992 Jun 29;305(2):110–114. doi: 10.1016/0014-5793(92)80875-h. [DOI] [PubMed] [Google Scholar]
  112. Lu X. P., Leffert H. L. Induction of sodium pump beta 1-subunit mRNA expression during hepatocellular growth transitions in vitro and in vivo. J Biol Chem. 1991 May 15;266(14):9276–9284. [PubMed] [Google Scholar]
  113. Lynch A. M., McGivan J. D. Evidence for a single common Na+-dependent transport system for alanine, glutamine, leucine and phenylalanine in brush-border membrane vesicles from bovine kidney. Biochim Biophys Acta. 1987 May 29;899(2):176–184. doi: 10.1016/0005-2736(87)90398-1. [DOI] [PubMed] [Google Scholar]
  114. López-Corcuera B., Alcántara R., Vázquez J., Aragón C. Hydrodynamic properties and immunological identification of the sodium- and chloride-coupled glycine transporter. J Biol Chem. 1993 Jan 25;268(3):2239–2243. [PubMed] [Google Scholar]
  115. López-Corcuera B., Vázquez J., Aragón C. Purification of the sodium- and chloride-coupled glycine transporter from central nervous system. J Biol Chem. 1991 Dec 25;266(36):24809–24814. [PubMed] [Google Scholar]
  116. Maenz D. D., Patience J. F. L-threonine transport in pig jejunal brush border membrane vesicles. Functional characterization of the unique system B in the intestinal epithelium. J Biol Chem. 1992 Nov 5;267(31):22079–22086. [PubMed] [Google Scholar]
  117. Mager D., Bernstein A. Early transport changes during erythroid differentiation of Friend leukemic cells. J Cell Physiol. 1978 Mar;94(3):275–285. doi: 10.1002/jcp.1040940305. [DOI] [PubMed] [Google Scholar]
  118. Martinez-Mas J. V., Casado J., Felipe A., Marin J. J., Pastor-Anglada M. L-alanine uptake by rat liver parenchymal and haematopoietic cells during the perinatal period. Biochem J. 1993 Aug 1;293(Pt 3):819–824. doi: 10.1042/bj2930819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Martínez-Mas J. V., Ruiz-Montasell B., Felipe A., Casado J., Pastor-Anglada M. Up-regulation of system A activity in the regenerating rat liver. FEBS Lett. 1993 Aug 23;329(1-2):189–193. doi: 10.1016/0014-5793(93)80219-k. [DOI] [PubMed] [Google Scholar]
  120. Matthews J. B., Awtrey C. S., Madara J. L. Microfilament-dependent activation of Na+/K+/2Cl- cotransport by cAMP in intestinal epithelial monolayers. J Clin Invest. 1992 Oct;90(4):1608–1613. doi: 10.1172/JCI116030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. McCormick J. I., Jetté M., Potier M., Béliveau R., Johnstone R. M. Molecular size of a Na(+)-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation. Biochemistry. 1991 Apr 16;30(15):3704–3709. doi: 10.1021/bi00229a016. [DOI] [PubMed] [Google Scholar]
  122. McCormick J. I., Johnstone R. M. Simple and effective purification of a Na+-dependent amino acid transport system from Ehrlich ascites cell plasma membrane. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7877–7881. doi: 10.1073/pnas.85.21.7877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. McGivan J. D., Ramsell J. C., Lacey J. H. Stimulation of alanine transport and metabolism by dibutyryl cyclic AMP in the hepatocytes from fed rats. Assessment of transport as a potential rate-limiting step for alanine metabolism. Biochim Biophys Acta. 1981 Jun 22;644(2):295–304. doi: 10.1016/0005-2736(81)90387-4. [DOI] [PubMed] [Google Scholar]
  124. McNamara P. D., Rea C. T., Segal S. Expression of rat jejunal cystine carrier in Xenopus oocytes. J Biol Chem. 1991 Jan 15;266(2):986–989. [PubMed] [Google Scholar]
  125. Mills B., Tupper J. T. Cell cycle dependent changes in potassium transport. J Cell Physiol. 1976 Sep;89(1):123–132. doi: 10.1002/jcp.1040890112. [DOI] [PubMed] [Google Scholar]
  126. Miyamoto Y., Nakamura H., Hoshi T., Ganapathy V., Leibach F. H. Uphill transport of beta-alanine in intestinal brush-border membrane vesicles. Am J Physiol. 1990 Sep;259(3 Pt 1):G372–G379. doi: 10.1152/ajpgi.1990.259.3.G372. [DOI] [PubMed] [Google Scholar]
  127. Moffett J., Englesberg E. Recessive constitutive mutant Chinese hamster ovary cells (CHO-K1) with an altered A system for amino acid transport and the mechanism of gene regulation of the A system. Mol Cell Biol. 1984 Apr;4(4):799–808. doi: 10.1128/mcb.4.4.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Moffett J., Englesberg E. Regulation of the A system of amino acid transport in Chinese hamster ovary cells, CHO-K1: the difference in specificity between the apo-repressor inactivator (apo-ri) and the transporter and the characterization of the proposed apo-ri. J Cell Physiol. 1986 Mar;126(3):421–429. doi: 10.1002/jcp.1041260313. [DOI] [PubMed] [Google Scholar]
  129. Molitoris B. A., Nelson W. J. Alterations in the establishment and maintenance of epithelial cell polarity as a basis for disease processes. J Clin Invest. 1990 Jan;85(1):3–9. doi: 10.1172/JCI114427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Mosckovitz R., Yan N., Heimer E., Felix A., Tate S. S., Udenfriend S. Characterization of the rat neutral and basic amino acid transporter utilizing anti-peptide antibodies. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4022–4026. doi: 10.1073/pnas.90.9.4022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Moule S. K., Bradford N. M., McGivan J. D. Short-term stimulation of Na+-dependent amino acid transport by dibutyryl cyclic AMP in hepatocytes. Characteristics and partial mechanism. Biochem J. 1987 Feb 1;241(3):737–743. doi: 10.1042/bj2410737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Moule S. K., McGivan J. D. Epidermal growth factor and cyclic AMP stimulate Na+/H+ exchange in isolated rat hepatocytes. Eur J Biochem. 1990 Feb 14;187(3):677–682. doi: 10.1111/j.1432-1033.1990.tb15353.x. [DOI] [PubMed] [Google Scholar]
  133. Moule S. K., McGivan J. D. Epidermal growth factor, like glucagon, exerts a short-term stimulation of alanine transport in rat hepatocytes. Biochem J. 1987 Oct 1;247(1):233–235. doi: 10.1042/bj2470233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Nelson W. J., Hammerton R. W. A membrane-cytoskeletal complex containing Na+,K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J Cell Biol. 1989 Mar;108(3):893–902. doi: 10.1083/jcb.108.3.893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. OXENDER D. L., CHRISTENSEN H. N. DISTINCT MEDIATING SYSTEMS FOR THE TRANSPORT OF NEUTRAL AMINO ACIDS BY THE EHRLICH CELL. J Biol Chem. 1963 Nov;238:3686–3699. [PubMed] [Google Scholar]
  136. Oxender D. L., Lee M., Cecchini G. Regulation of amino acid transport activity and growth rate of animal cells in culture. J Biol Chem. 1977 Apr 25;252(8):2680–2683. [PubMed] [Google Scholar]
  137. Pacholczyk T., Blakely R. D., Amara S. G. Expression cloning of a cocaine- and antidepressant-sensitive human noradrenaline transporter. Nature. 1991 Mar 28;350(6316):350–354. doi: 10.1038/350350a0. [DOI] [PubMed] [Google Scholar]
  138. Palacin M., Werner A., Dittmer J., Murer H., Biber J. Expression of rat liver Na+/L-alanine co-transport in Xenopus laevis oocytes. Effect of glucagon in vivo. Biochem J. 1990 Aug 15;270(1):189–195. doi: 10.1042/bj2700189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  140. Petronini P. G., Tramacere M., Kay J. E., Borghetti A. F. Adaptive response of cultured fibroblasts to hyperosmolarity. Exp Cell Res. 1986 Jul;165(1):180–190. doi: 10.1016/0014-4827(86)90542-2. [DOI] [PubMed] [Google Scholar]
  141. Petronini P. G., Tramacere M., Mazzini A., Kay J. E., Borghetti A. F. Control of protein synthesis by extracellular Na+ in cultured fibroblasts. J Cell Physiol. 1989 Aug;140(2):202–211. doi: 10.1002/jcp.1041400203. [DOI] [PubMed] [Google Scholar]
  142. Petronini P. G., Tramacere M., Mazzini A., Piedimonte G., Silvotti L., Borghetti A. F. Hyperosmolarity-induced stress proteins in chick embryo fibroblasts. Exp Cell Res. 1987 Oct;172(2):450–462. doi: 10.1016/0014-4827(87)90403-4. [DOI] [PubMed] [Google Scholar]
  143. Petronini P. G., Tramacere M., Wheeler K. P., Borghetti A. F. Induction of amino acid transport activity in chick embryo fibroblasts by replacement of extracellular sodium chloride with disaccharide. Biochim Biophys Acta. 1990 Jul 12;1053(2-3):144–150. doi: 10.1016/0167-4889(90)90006-y. [DOI] [PubMed] [Google Scholar]
  144. Piacentini M., Sartori C., Beninati S., Bargagli A. M., Cerù-Argento M. P. Ornithine decarboxylase, transglutaminase, diamine oxidase and total diamines and polyamines in maternal liver and kidney throughout rat pregnancy. Biochem J. 1986 Mar 1;234(2):435–440. doi: 10.1042/bj2340435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Pickel V. M., Nirenberg M. J., Chan J., Mosckovitz R., Udenfriend S., Tate S. S. Ultrastructural localization of a neutral and basic amino acid transporter in rat kidney and intestine. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7779–7783. doi: 10.1073/pnas.90.16.7779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Pines G., Danbolt N. C., Bjørås M., Zhang Y., Bendahan A., Eide L., Koepsell H., Storm-Mathisen J., Seeberg E., Kanner B. I. Cloning and expression of a rat brain L-glutamate transporter. Nature. 1992 Dec 3;360(6403):464–467. doi: 10.1038/360464a0. [DOI] [PubMed] [Google Scholar]
  147. Plakidou-Dymock S., McGivan J. D. Regulation of the glutamate transporter by amino acid deprivation and associated effects on the level of EAAC1 mRNA in the renal epithelial cell line NBL-I. Biochem J. 1993 Nov 1;295(Pt 3):749–755. doi: 10.1042/bj2950749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Plakidou-Dymock S., McGivan J. D. The oligomeric structure of renal aminopeptidase N from bovine brush-border membrane vesicles. Biochim Biophys Acta. 1993 Jan 18;1145(1):105–112. doi: 10.1016/0005-2736(93)90386-E. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Plakidou-Dymock S., Tanner M. J., McGivan J. D. A role for aminopeptidase N in Na(+)-dependent amino acid transport in bovine renal brush-border membranes. Biochem J. 1993 Feb 15;290(Pt 1):59–65. doi: 10.1042/bj2900059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  150. Poulin R., Pegg A. E. Regulation of ornithine decarboxylase expression by anisosmotic shock in alpha-difluoromethylornithine-resistant L1210 cells. J Biol Chem. 1990 Mar 5;265(7):4025–4032. [PubMed] [Google Scholar]
  151. Qian N. X., Jones M., McDonough A., Englesberg E. alar4, a constitutive mutant of the A system for amino acid transport, has increased abundance of the Na+,K+-ATPase and mRNA for alpha 1 subunit of this enzyme. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7984–7988. doi: 10.1073/pnas.86.20.7984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Qian N. X., Pastor-Anglada M., Englesberg E. Evidence for coordinate regulation of the A system for amino acid transport and the mRNA for the alpha 1 subunit of the Na+,K(+)-ATPase gene in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3416–3420. doi: 10.1073/pnas.88.8.3416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Quesada A. R., McGivan J. D. A rapid method for the functional reconstitution of amino acid transport systems from rat liver plasma membranes. Partial purification of System A. Biochem J. 1988 Nov 1;255(3):963–969. doi: 10.1042/bj2550963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Radian R., Bendahan A., Kanner B. I. Purification and identification of the functional sodium- and chloride-coupled gamma-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem. 1986 Nov 25;261(33):15437–15441. [PubMed] [Google Scholar]
  155. Renner E. L., Lake J. R., Cragoe E. J., Jr, Scharschmidt B. F. Amiloride and amiloride analogs inhibit Na+/K+-transporting ATPase and Na+-coupled alanine transport in rat hepatocytes. Biochim Biophys Acta. 1988 Mar 3;938(3):386–394. doi: 10.1016/0005-2736(88)90136-8. [DOI] [PubMed] [Google Scholar]
  156. Rinehart C. A., Jr, Canellakis E. S. Induction of ornithine decarboxylase activity by insulin and growth factors is mediated by amino acids. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4365–4368. doi: 10.1073/pnas.82.13.4365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Rinehart C. A., Jr, Viceps-Madore D., Fong W. F., Ortiz J. G., Canellakis E. S. The effect of transport system A and N amino acids and of nerve and epidermal growth factors on the induction of ornithine decarboxylase activity. J Cell Physiol. 1985 Jun;123(3):435–441. doi: 10.1002/jcp.1041230321. [DOI] [PubMed] [Google Scholar]
  158. Robey R. B., Kwon H. M., Handler J. S., Garcia-Perez A., Burg M. B. Induction of glycinebetaine uptake into Xenopus oocytes by injection of poly(A)+ RNA from renal cells exposed to high extracellular NaCl. J Biol Chem. 1991 Jun 5;266(16):10400–10405. [PubMed] [Google Scholar]
  159. Rosenthal N. R., Jacob R., Barrett E. Diabetes enhances activity of alanine transport in liver plasma membrane vesicles. Am J Physiol. 1985 May;248(5 Pt 1):E581–E587. doi: 10.1152/ajpendo.1985.248.5.E581. [DOI] [PubMed] [Google Scholar]
  160. Roy G., Malo C. Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J Membr Biol. 1992 Oct;130(1):83–90. doi: 10.1007/BF00233740. [DOI] [PubMed] [Google Scholar]
  161. Roy G., Sauvé R. Effect of anisotonic media on volume, ion and amino-acid content and membrane potential of kidney cells (MDCK) in culture. J Membr Biol. 1987;100(1):83–96. doi: 10.1007/BF02209143. [DOI] [PubMed] [Google Scholar]
  162. Ruiz-Montasell B., Javier Casado F., Felipe A., Pastor-Anglada M. Uridine transport in basolateral plasma membrane vesicles from rat liver. J Membr Biol. 1992 Jun;128(3):227–233. doi: 10.1007/BF00231815. [DOI] [PubMed] [Google Scholar]
  163. Ruiz-Montasell B., Martinez-Mas J. V., Enrich C., Casado F. J., Felipe A., Pastor-Anglada M. Early induction of Na(+)-dependent uridine uptake in the regenerating rat liver. FEBS Lett. 1993 Jan 18;316(1):85–88. doi: 10.1016/0014-5793(93)81741-h. [DOI] [PubMed] [Google Scholar]
  164. Ruiz B., Felipe A., Casado J., Pastor-Anglada M. Amino acid uptake by liver of genetically obese Zucker rats. Biochem J. 1991 Dec 1;280(Pt 2):367–372. doi: 10.1042/bj2800367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Russell D., Snyder S. H. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1420–1427. doi: 10.1073/pnas.60.4.1420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Samson M., Fehlmann M., Dolais-Kitabgi J., Freychet P. Amino acid transport in isolated hepatocytes from streptozotocin-diabetic rats. Diabetes. 1980 Dec;29(12):996–1000. doi: 10.2337/diab.29.12.996. [DOI] [PubMed] [Google Scholar]
  167. Sander G., Pardee A. B. Transport changes in synchronously growing CHO and L cells. J Cell Physiol. 1972 Oct;80(2):267–271. doi: 10.1002/jcp.1040800214. [DOI] [PubMed] [Google Scholar]
  168. Schenerman M. A., Kilberg M. S. Maintenance of glucagon-stimulated system A amino acid transport activity in rat liver plasma membrane vesicles. Biochim Biophys Acta. 1986 Apr 25;856(3):428–436. doi: 10.1016/0005-2736(86)90133-1. [DOI] [PubMed] [Google Scholar]
  169. Schenerman M. A., Leister K. J., Trachtenberg D. K., Racker E. Induction of system A amino acid transport through long-term treatment with ouabain: correlation with increased (Na+/K+)-ATPase activity. J Cell Physiol. 1988 May;135(2):157–162. doi: 10.1002/jcp.1041350202. [DOI] [PubMed] [Google Scholar]
  170. Schloss P., Mayser W., Betz H. Neurotransmitter transporters. A novel family of integral plasma membrane proteins. FEBS Lett. 1992 Jul 27;307(1):76–80. doi: 10.1016/0014-5793(92)80905-v. [DOI] [PubMed] [Google Scholar]
  171. Schulz W. A., Eickelmann P., Hallbrucker C., Sies H., Häussinger D. Increase of beta-actin mRNA upon hypotonic perfusion of perfused rat liver. FEBS Lett. 1991 Nov 4;292(1-2):264–266. doi: 10.1016/0014-5793(91)80880-c. [DOI] [PubMed] [Google Scholar]
  172. Sepúlveda F. V., Pearson J. D. Characterization of neutral amino acid uptake by cultured epithelial cells from pig kidney. J Cell Physiol. 1982 Aug;112(2):182–188. doi: 10.1002/jcp.1041120205. [DOI] [PubMed] [Google Scholar]
  173. Shafqat S., Tamarappoo B. K., Kilberg M. S., Puranam R. S., McNamara J. O., Guadaño-Ferraz A., Fremeau R. T., Jr Cloning and expression of a novel Na(+)-dependent neutral amino acid transporter structurally related to mammalian Na+/glutamate cotransporters. J Biol Chem. 1993 Jul 25;268(21):15351–15355. [PubMed] [Google Scholar]
  174. Shapiro M., Matthews J., Hecht G., Delp C., Madara J. L. Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells. J Clin Invest. 1991 Jun;87(6):1903–1909. doi: 10.1172/JCI115215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Shimada S., Kitayama S., Lin C. L., Patel A., Nanthakumar E., Gregor P., Kuhar M., Uhl G. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA. Science. 1991 Oct 25;254(5031):576–578. doi: 10.1126/science.1948034. [DOI] [PubMed] [Google Scholar]
  176. Shotwell M. A., Jayme D. W., Kilberg M. S., Oxender D. L. Neutral amino acid transport systems in Chinese hamster ovary cells. J Biol Chem. 1981 Jun 10;256(11):5422–5427. [PubMed] [Google Scholar]
  177. Shotwell M. A., Kilberg M. S., Oxender D. L. The regulation of neutral amino acid transport in mammalian cells. Biochim Biophys Acta. 1983 May 24;737(2):267–284. doi: 10.1016/0304-4157(83)90003-5. [DOI] [PubMed] [Google Scholar]
  178. Sips H. J., Groen A. K., Tager J. M. Plasma-membrane transport of alanine is rate-limiting for its metabolism in rat-liver parenchymal cells. FEBS Lett. 1980 Oct 6;119(2):271–274. doi: 10.1016/0014-5793(80)80269-9. [DOI] [PubMed] [Google Scholar]
  179. Smith K. E., Borden L. A., Hartig P. R., Branchek T., Weinshank R. L. Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron. 1992 May;8(5):927–935. doi: 10.1016/0896-6273(92)90207-t. [DOI] [PubMed] [Google Scholar]
  180. Soler C., Felipe A., Casado F. J., McGivan J. D., Pastor-Anglada M. Hyperosmolarity leads to an increase in derepressed system A activity in the renal epithelial cell line NBL-1. Biochem J. 1993 Feb 1;289(Pt 3):653–658. doi: 10.1042/bj2890653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Stevens B. R., Fernandez A., Hirayama B., Wright E. M., Kempner E. S. Intestinal brush border membrane Na+/glucose cotransporter functions in situ as a homotetramer. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1456–1460. doi: 10.1073/pnas.87.4.1456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Stevens B. R., Kaunitz J. D., Wright E. M. Intestinal transport of amino acids and sugars: advances using membrane vesicles. Annu Rev Physiol. 1984;46:417–433. doi: 10.1146/annurev.ph.46.030184.002221. [DOI] [PubMed] [Google Scholar]
  183. Storck T., Schulte S., Hofmann K., Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10955–10959. doi: 10.1073/pnas.89.22.10955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  184. Su T. Z., Logsdon C. D., Oxender D. L. Chinese hamster ovary mRNA-dependent, Na(+)-independent L-leucine transport in Xenopus laevis oocytes. Mol Cell Biol. 1992 Dec;12(12):5281–5287. doi: 10.1128/mcb.12.12.5281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  185. Tamarappoo B. K., Handlogten M. E., Laine R. O., Serrano M. A., Dugan J., Kilberg M. S. Identification of the protein responsible for hepatic system N amino acid transport activity. J Biol Chem. 1992 Feb 5;267(4):2370–2374. [PubMed] [Google Scholar]
  186. Tamarappoo B. K., Kilberg M. S. Functional reconstitution of the hepatic system N amino acid transport activity. Biochem J. 1991 Feb 15;274(Pt 1):97–101. doi: 10.1042/bj2740097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Tarnuzzer R. W., Campa M. J., Qian N. X., Englesberg E., Kilberg M. S. Expression of the mammalian system A neutral amino acid transporter in Xenopus oocytes. J Biol Chem. 1990 Aug 15;265(23):13914–13917. [PubMed] [Google Scholar]
  188. Tate S. S., Urade R., Getchell T. V., Udenfriend S. Expression of the mammalian Na+-independent L system amino acid transporter in Xenopus laevis oocytes. Arch Biochem Biophys. 1989 Dec;275(2):591–596. doi: 10.1016/0003-9861(89)90405-0. [DOI] [PubMed] [Google Scholar]
  189. Tate S. S., Yan N., Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):1–5. doi: 10.1073/pnas.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Taylor P. M., Mackenzie B., Low S. Y., Rennie M. J. Expression of rat liver glutamine transporters in Xenopus laevis oocytes. J Biol Chem. 1992 Feb 25;267(6):3873–3877. [PubMed] [Google Scholar]
  191. Theodoropoulos P. A., Stournaras C., Stoll B., Markogiannakis E., Lang F., Gravanis A., Häussinger D. Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases actin mRNA levels. FEBS Lett. 1992 Oct 26;311(3):241–245. doi: 10.1016/0014-5793(92)81111-x. [DOI] [PubMed] [Google Scholar]
  192. Tramacere M., Borghetti A. F., Guidotti G. G. Serum-mediated regulation of amino acid transport in cultured chick embryo fibroblasts. J Cell Physiol. 1977 Dec;93(3):425–433. doi: 10.1002/jcp.1040930314. [DOI] [PubMed] [Google Scholar]
  193. Tramacere M., Petronini P. G., Severini A., Borghetti A. F. Osmoregulation of amino acid transport activity in cultured fibroblasts. Exp Cell Res. 1984 Mar;151(1):70–79. doi: 10.1016/0014-4827(84)90356-2. [DOI] [PubMed] [Google Scholar]
  194. Uchida S., Kwon H. M., Yamauchi A., Preston A. S., Marumo F., Handler J. S. Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8230–8234. doi: 10.1073/pnas.89.17.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Uchida S., Yamauchi A., Preston A. S., Kwon H. M., Handler J. S. Medium tonicity regulates expression of the Na(+)- and Cl(-)-dependent betaine transporter in Madin-Darby canine kidney cells by increasing transcription of the transporter gene. J Clin Invest. 1993 Apr;91(4):1604–1607. doi: 10.1172/JCI116367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  196. Van Dyke R. W., Scharschmidt B. F. (Na,K)-ATPase-mediated cation pumping in cultured rat hepatocytes. Rapid modulation by alanine and taurocholate transport and characterization of its relationship to intracellular sodium concentration. J Biol Chem. 1983 Nov 10;258(21):12912–12919. [PubMed] [Google Scholar]
  197. Van Winkle L. J., Christensen H. N., Campione A. L. Na+-dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts. J Biol Chem. 1985 Oct 5;260(22):12118–12123. [PubMed] [Google Scholar]
  198. Wang H., Dechant E., Kavanaugh M., North R. A., Kabat D. Effects of ecotropic murine retroviruses on the dual-function cell surface receptor/basic amino acid transporter. J Biol Chem. 1992 Nov 25;267(33):23617–23624. [PubMed] [Google Scholar]
  199. Wang H., Kavanaugh M. P., North R. A., Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature. 1991 Aug 22;352(6337):729–731. doi: 10.1038/352729a0. [DOI] [PubMed] [Google Scholar]
  200. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Wright E. M., Peerce B. E. Identification and conformational changes of the intestinal proline carrier. J Biol Chem. 1984 Dec 25;259(24):14993–14996. [PubMed] [Google Scholar]
  202. Yamauchi A., Uchida S., Kwon H. M., Preston A. S., Robey R. B., Garcia-Perez A., Burg M. B., Handler J. S. Cloning of a Na(+)- and Cl(-)-dependent betaine transporter that is regulated by hypertonicity. J Biol Chem. 1992 Jan 5;267(1):649–652. [PubMed] [Google Scholar]
  203. Yamauchi A., Uchida S., Preston A. S., Kwon H. M., Handler J. S. Hypertonicity stimulates transcription of gene for Na(+)-myo-inositol cotransporter in MDCK cells. Am J Physiol. 1993 Jan;264(1 Pt 2):F20–F23. doi: 10.1152/ajprenal.1993.264.1.F20. [DOI] [PubMed] [Google Scholar]
  204. Zibirre R., Poronnik P., Koch G. Na+-dependent amino acid transport is a major factor determining the rate of (Na+,K+)-ATPase mediated cation transport in intact HeLa cells. J Cell Physiol. 1986 Oct;129(1):85–93. doi: 10.1002/jcp.1041290113. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES