Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jun 1;260(2):499–507. doi: 10.1042/bj2600499

Activation of hepatocyte protein kinase C by redox-cycling quinones.

G E Kass 1, S K Duddy 1, S Orrenius 1
PMCID: PMC1138696  PMID: 2764885

Abstract

The effects of quinone-generated active oxygen species on rat hepatocyte protein kinase C were investigated. The specific activity of cytosolic protein kinase C was increased 2-3-fold in hepatocytes incubated with the redox-cycling quinones, menadione, duroquinone or 2,3-dimethoxy-1,4-naphthoquinone, without alterations in particulate protein kinase C specific activity or Ca2+- and lipid-independent kinase activities. Redox-cycling quinones did not stimulate translocation of protein kinase C; however, activated protein kinase C was redistributed from cytosol to the particulate fraction when quinone-treated hepatocytes were exposed to 12-O-tetradecanoylphorbol 13-acetate (TPA). Quinone treatment did not alter cytosolic phorbol 12,13-dibutyrate (PDBu) binding capacity, and the cytosol of both control and quinone-treated hepatocytes exhibited a Kd for PDBu binding of 2 nM. Quinone-mediated activation of cytosolic protein kinase C was reversed by incubation with 10 mM-beta-mercaptoethanol, dithiothreitol or GSH, at 4 degrees C for 24 h. Furthermore, protein kinase C specific activity in control cytosol incubated in air increased by over 100% within 3 h; this increase was reversed by thiol-reducing agents. Similarly, incubation of partially-purified rat brain protein kinase C in air, or with low concentrations of GSSG in the presence of GSH, resulted in a 2-2.5-fold increase in Ca2+- and lipid-dependent kinase activity. In contrast with the effects of the redox-cycling quinones, when hepatocytes were treated with the thiol agents N-ethylmaleimide (NEM), p-benzoquinone (pBQ) or p-chloromercuribenzoic acid (pCMB), the cytosolic Ca2+- and lipid-dependent kinase activity was significantly inhibited, but the particulate-associated protein kinase C activity was unaffected. The Ca2+- and lipid-independent kinase activity of both the cytosolic and particulate fractions was significantly stimulated by NEM, but was unaffected by pBQ and pCMB. These results show that hepatocyte cytosolic protein kinase C is activated to a high-Vmax form by quinone-generated active oxygen species, and this effect is due to a reduction-sensitive modification of the thiol/disulphide status of protein kinase C.

Full text

PDF
502

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bellomo G., Mirabelli F., DiMonte D., Richelmi P., Thor H., Orrenius C., Orrenius S. Formation and reduction of glutathione-protein mixed disulfides during oxidative stress. A study with isolated hepatocytes and menadione (2-methyl-1,4-naphthoquinone). Biochem Pharmacol. 1987 Apr 15;36(8):1313–1320. doi: 10.1016/0006-2952(87)90087-6. [DOI] [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  3. Cappel R. E., Gilbert H. F. Thiol/disulfide exchange between 3-hydroxy-3-methylglutaryl-CoA reductase and glutathione. A thermodynamically facile dithiol oxidation. J Biol Chem. 1988 Sep 5;263(25):12204–12212. [PubMed] [Google Scholar]
  4. Cerutti P. A. Prooxidant states and tumor promotion. Science. 1985 Jan 25;227(4685):375–381. doi: 10.1126/science.2981433. [DOI] [PubMed] [Google Scholar]
  5. Chan T. M., Chen E., Tatoyan A., Shargill N. S., Pleta M., Hochstein P. Stimulation of tyrosine-specific protein phosphorylation in the rat liver plasma membrane by oxygen radicals. Biochem Biophys Res Commun. 1986 Sep 14;139(2):439–445. doi: 10.1016/s0006-291x(86)80010-9. [DOI] [PubMed] [Google Scholar]
  6. Cooper D. R., Konda T. S., Standaert M. L., Davis J. S., Pollet R. J., Farese R. V. Insulin increases membrane and cytosolic protein kinase C activity in BC3H-1 myocytes. J Biol Chem. 1987 Mar 15;262(8):3633–3639. [PubMed] [Google Scholar]
  7. Cotgreave I. A., Moldéus P., Orrenius S. Host biochemical defense mechanisms against prooxidants. Annu Rev Pharmacol Toxicol. 1988;28:189–212. doi: 10.1146/annurev.pa.28.040188.001201. [DOI] [PubMed] [Google Scholar]
  8. Darbon J. M., Issandou M., Delassus F., Bayard F. Phorbol esters induce both intracellular translocation and down-regulation of protein kinase C in MCF-7 cells. Biochem Biophys Res Commun. 1986 Jun 30;137(3):1159–1166. doi: 10.1016/0006-291x(86)90347-5. [DOI] [PubMed] [Google Scholar]
  9. Del Principe D., Menichelli A., De Matteis W., Di Corpo M. L., Di Giulio S., Finazzi-Agro A. Hydrogen peroxide has a role in the aggregation of human platelets. FEBS Lett. 1985 Jun 3;185(1):142–146. doi: 10.1016/0014-5793(85)80758-4. [DOI] [PubMed] [Google Scholar]
  10. Di Monte D., Ross D., Bellomo G., Eklöw L., Orrenius S. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch Biochem Biophys. 1984 Dec;235(2):334–342. doi: 10.1016/0003-9861(84)90206-6. [DOI] [PubMed] [Google Scholar]
  11. Ernst V., Levin D. H., London I. M. Inhibition of protein synthesis initiation by oxidized glutathione: activation of a protein kinase that phosphorylates the alpha subunit of eukaryotic initiation factor 2. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4110–4114. doi: 10.1073/pnas.75.9.4110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forsbeck K., Nilsson K., Hansson A., Skoglund G., Ingelman-Sundberg M. Phorbol ester-induced alteration of differentiation and proliferation in human hematopoietic tumor cell lines: relationship to the presence and subcellular distribution of protein kinase C. Cancer Res. 1985 Dec;45(12 Pt 1):6194–6199. [PubMed] [Google Scholar]
  13. Fujiki H., Yamashita K., Suganuma M., Horiuchi T., Taniguchi N., Makita A. Involvement of sulfatide in activation of protein kinase C by tumor promoters. Biochem Biophys Res Commun. 1986 Jul 16;138(1):153–158. doi: 10.1016/0006-291x(86)90259-7. [DOI] [PubMed] [Google Scholar]
  14. Ganong B. R., Loomis C. R., Hannun Y. A., Bell R. M. Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1184–1188. doi: 10.1073/pnas.83.5.1184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gant T. W., Rao D. N., Mason R. P., Cohen G. M. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem Biol Interact. 1988;65(2):157–173. doi: 10.1016/0009-2797(88)90052-x. [DOI] [PubMed] [Google Scholar]
  16. Gopalakrishna R., Anderson W. B. Susceptibility of protein kinase C to oxidative inactivation: loss of both phosphotransferase activity and phorbol diester binding. FEBS Lett. 1987 Dec 10;225(1-2):233–237. doi: 10.1016/0014-5793(87)81164-x. [DOI] [PubMed] [Google Scholar]
  17. Halsey D. L., Girard P. R., Kuo J. F., Blackshear P. J. Protein kinase C in fibroblasts. Characteristics of its intracellular location during growth and after exposure to phorbol esters and other mitogens. J Biol Chem. 1987 Feb 15;262(5):2234–2243. [PubMed] [Google Scholar]
  18. Hayes G. R., Lockwood D. H. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8115–8119. doi: 10.1073/pnas.84.22.8115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaibuchi K., Tsuda T., Kikuchi A., Tanimoto T., Yamashita T., Takai Y. Possible involvement of protein kinase C and calcium ion in growth factor-induced expression of c-myc oncogene in Swiss 3T3 fibroblasts. J Biol Chem. 1986 Jan 25;261(3):1187–1192. [PubMed] [Google Scholar]
  20. Kappus H. Overview of enzyme systems involved in bio-reduction of drugs and in redox cycling. Biochem Pharmacol. 1986 Jan 1;35(1):1–6. doi: 10.1016/0006-2952(86)90544-7. [DOI] [PubMed] [Google Scholar]
  21. Kikkawa U., Minakuchi R., Takai Y., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase (protein kinase C) from rat brain. Methods Enzymol. 1983;99:288–298. doi: 10.1016/0076-6879(83)99064-x. [DOI] [PubMed] [Google Scholar]
  22. Kikkawa U., Nishizuka Y. The role of protein kinase C in transmembrane signalling. Annu Rev Cell Biol. 1986;2:149–178. doi: 10.1146/annurev.cb.02.110186.001053. [DOI] [PubMed] [Google Scholar]
  23. Koshio O., Akanuma Y., Kasuga M. Hydrogen peroxide stimulates tyrosine phosphorylation of the insulin receptor and its tyrosine kinase activity in intact cells. Biochem J. 1988 Feb 15;250(1):95–101. doi: 10.1042/bj2500095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  25. McCaffrey P., Ran W., Campisi J., Rosner M. R. Two independent growth factor-generated signals regulate c-fos and c-myc mRNA levels in Swiss 3T3 cells. J Biol Chem. 1987 Feb 5;262(4):1442–1445. [PubMed] [Google Scholar]
  26. Moldéus P., Högberg J., Orrenius S. Isolation and use of liver cells. Methods Enzymol. 1978;52:60–71. doi: 10.1016/s0076-6879(78)52006-5. [DOI] [PubMed] [Google Scholar]
  27. Muehlematter D., Larsson R., Cerutti P. Active oxygen induced DNA strand breakage and poly ADP-ribosylation in promotable and non-promotable JB6 mouse epidermal cells. Carcinogenesis. 1988 Feb;9(2):239–245. doi: 10.1093/carcin/9.2.239. [DOI] [PubMed] [Google Scholar]
  28. Nakashima K., Pontremoli S., Horecker B. L. Activation of rabbit liver fructose diphosphatase by coenzyme A and acyl carrier protein. Proc Natl Acad Sci U S A. 1969 Nov;64(3):947–951. doi: 10.1073/pnas.64.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nicotera P., McConkey D., Svensson S. A., Bellomo G., Orrenius S. Correlation between cytosolic Ca2+ concentration and cytotoxicity in hepatocytes exposed to oxidative stress. Toxicology. 1988 Nov 14;52(1-2):55–63. doi: 10.1016/0300-483x(88)90196-5. [DOI] [PubMed] [Google Scholar]
  30. Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature. 1988 Aug 25;334(6184):661–665. doi: 10.1038/334661a0. [DOI] [PubMed] [Google Scholar]
  31. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  32. Perchellet J. P., Kishore G. S., Perchellet E. M. Enhancement by adriamycin of the effects of 12-O-tetradecanoylphorbol-13-acetate on mouse epidermal glutathione peroxidase activity, ornithine decarboxylase induction and skin tumor promotion. Cancer Lett. 1985 Nov;29(2):127–137. doi: 10.1016/0304-3835(85)90151-x. [DOI] [PubMed] [Google Scholar]
  33. Reed D. J., Babson J. R., Beatty P. W., Brodie A. E., Ellis W. W., Potter D. W. High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Anal Biochem. 1980 Jul 15;106(1):55–62. doi: 10.1016/0003-2697(80)90118-9. [DOI] [PubMed] [Google Scholar]
  34. Roghani M., Da Silva C., Castagna M. Tumor promoter chloroform is a potent protein kinase C activator. Biochem Biophys Res Commun. 1987 Feb 13;142(3):738–744. doi: 10.1016/0006-291x(87)91476-8. [DOI] [PubMed] [Google Scholar]
  35. Rossi L., Moore G. A., Orrenius S., O'Brien P. J. Quinone toxicity in hepatocytes without oxidative stress. Arch Biochem Biophys. 1986 Nov 15;251(1):25–35. doi: 10.1016/0003-9861(86)90047-0. [DOI] [PubMed] [Google Scholar]
  36. Sies H., Brigelius R., Graf P. Hormones, glutathione status and protein S-thiolation. Adv Enzyme Regul. 1987;26:175–189. doi: 10.1016/0065-2571(87)90013-6. [DOI] [PubMed] [Google Scholar]
  37. Skoglund G., Cotgreave I., Rincon J., Patarroyo M., Ingelman-Sundberg M. H2O2 activates CD11b/CD18-dependent cell adhesion. Biochem Biophys Res Commun. 1988 Dec 15;157(2):443–449. doi: 10.1016/s0006-291x(88)80269-9. [DOI] [PubMed] [Google Scholar]
  38. Tanaka Y., Miyake R., Kikkawa U., Nishizuka Y. Rapid assay of binding of tumor-promoting phorbol esters to protein kinase C1. J Biochem. 1986 Jan;99(1):257–261. doi: 10.1093/oxfordjournals.jbchem.a135467. [DOI] [PubMed] [Google Scholar]
  39. Thor H., Smith M. T., Hartzell P., Bellomo G., Jewell S. A., Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed] [Google Scholar]
  40. Troll W., Wiesner R. The role of oxygen radicals as a possible mechanism of tumor promotion. Annu Rev Pharmacol Toxicol. 1985;25:509–528. doi: 10.1146/annurev.pa.25.040185.002453. [DOI] [PubMed] [Google Scholar]
  41. Tschesche H., Macartney H. W. A new principle of regulation of enzymic activity. Activation and regulation of human polymorphonuclear leukocyte collagenase via disulfide-thiol exchange as catalysed by the glutathione cycle in a peroxidase-coupled reaction to glucose metabolism. Eur J Biochem. 1981 Nov;120(1):183–190. doi: 10.1111/j.1432-1033.1981.tb05687.x. [DOI] [PubMed] [Google Scholar]
  42. Ziegler D. M. Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Annu Rev Biochem. 1985;54:305–329. doi: 10.1146/annurev.bi.54.070185.001513. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES