Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jul 15;261(2):611–616. doi: 10.1042/bj2610611

Uptake, production and metabolism of cysteinyl leukotrienes in the isolated perfused rat liver. Inhibition of leukotriene uptake by cyclosporine.

W Hagmann 1, S Parthé 1, I Kaiser 1
PMCID: PMC1138868  PMID: 2549977

Abstract

1. The isolated perfused rat liver efficiently takes up cysteinyl leukotrienes (LTs) C4, D4, E4 and N-acetyl-LTE4 from circulation. More than 70% of these cysteinyl LTs are excreted from liver into bile within 1 h of onset of a 5 min infusion, while about 5% remain in the liver. About 20% of infused N-acetyl-LTE4 escapes hepatic first-pass extraction under our conditions. 2. Metabolites of LTC4 appearing in bile within 20 min of the onset of infusion include mainly LTD4 and N-acetyl-LTE4, but also omega-hydroxy-N-acetyl-LTE4 and omega-carboxy-N-acetyl-LTE4. Metabolites generated from omega-carboxy-N-acetyl-LTE4 by beta-oxidation from the omega-end represent the major biliary LTs secreted at later times. 3. Stimulation of the isolated perfused liver by the combined infusion of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) and the Ca2+ ionophore A23187 results in a transient increase of endogenous cysteinyl LT production, which is independent of extrahepatic cells. 4. The immunosuppressive drug cyclosporine causes a dose-dependent inhibition of hepatobiliary cysteinyl LT excretion, probably by interference with the sinusoidal uptake system for cysteinyl LTs.

Full text

PDF
616

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelgren L. E., Hammarström S. Distribution and metabolism of 3H-labeled leukotriene C3 in the mouse. J Biol Chem. 1982 Jan 10;257(1):531–535. [PubMed] [Google Scholar]
  2. Casteleijn E., Kuiper J., Van Rooij H. C., Kamps J. A., Koster J. F., Van Berkel T. J. Endotoxin stimulates glycogenolysis in the liver by means of intercellular communication. J Biol Chem. 1988 May 25;263(15):6953–6955. [PubMed] [Google Scholar]
  3. Casteleijn E., Kuiper J., Van Rooij H. C., Kamps J. A., Koster J. F., Van Berkel T. J. Prostaglandin D2 mediates the stimulation of glycogenolysis in the liver by phorbol ester. Biochem J. 1988 Feb 15;250(1):77–80. doi: 10.1042/bj2500077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Delorme D., Foster A., Girard Y., Rokach J. Synthesis of beta-oxidation products as potential leukotriene metabolites and their detection in bile of anesthetized rat. Prostaglandins. 1988 Sep;36(3):291–302. doi: 10.1016/0090-6980(88)90071-8. [DOI] [PubMed] [Google Scholar]
  5. Denzlinger C., Guhlmann A., Scheuber P. H., Wilker D., Hammer D. K., Keppler D. Metabolism and analysis of cysteinyl leukotrienes in the monkey. J Biol Chem. 1986 Nov 25;261(33):15601–15606. [PubMed] [Google Scholar]
  6. Denzlinger C., Rapp S., Hagmann W., Keppler D. Leukotrienes as mediators in tissue trauma. Science. 1985 Oct 18;230(4723):330–332. doi: 10.1126/science.4048937. [DOI] [PubMed] [Google Scholar]
  7. Dieter P., Altin J. G., Bygrave F. L. Possible involvement of prostaglandins in vasoconstriction induced by zymosan and arachidonic acid in the perfused rat liver. FEBS Lett. 1987 Mar 9;213(1):174–178. doi: 10.1016/0014-5793(87)81486-2. [DOI] [PubMed] [Google Scholar]
  8. Feuerstein G. Autonomic pharmacology of leukotrienes. J Auton Pharmacol. 1985 Jun;5(2):149–168. doi: 10.1111/j.1474-8673.1985.tb00116.x. [DOI] [PubMed] [Google Scholar]
  9. Ford-Hutchinson A. W. Leukotrienes: their formation and role as inflammatory mediators. Fed Proc. 1985 Jan;44(1 Pt 1):25–29. [PubMed] [Google Scholar]
  10. Foster A., Fitzsimmons B., Rokach J., Letts G. Evidence of in-vivo omega-oxidation of peptide leukotrienes in the rat: biliary excretion of 20-CO2H N-acetyl LTE4. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1237–1245. doi: 10.1016/s0006-291x(87)80265-6. [DOI] [PubMed] [Google Scholar]
  11. Foster A., Fitzsimmons B., Rokach J., Letts L. G. Metabolism and excretion of peptide leukotrienes in the anesthetized rat. Biochim Biophys Acta. 1987 Oct 17;921(3):486–493. doi: 10.1016/0005-2760(87)90076-2. [DOI] [PubMed] [Google Scholar]
  12. Hagmann W., Denzlinger C., Keppler D. Production of peptide leukotrienes in endotoxin shock. FEBS Lett. 1985 Jan 28;180(2):309–313. doi: 10.1016/0014-5793(85)81092-9. [DOI] [PubMed] [Google Scholar]
  13. Hagmann W., Denzlinger C., Keppler D. Role of peptide leukotrienes and their hepatobiliary elimination in endotoxin action. Circ Shock. 1984;14(4):223–235. [PubMed] [Google Scholar]
  14. Hagmann W., Denzlinger C., Rapp S., Weckbecker G., Keppler D. Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4. Prostaglandins. 1986 Feb;31(2):239–251. doi: 10.1016/0090-6980(86)90050-x. [DOI] [PubMed] [Google Scholar]
  15. Hagmann W., Steffan A. M., Kirn A., Keppler D. Leukotrienes as mediators in frog virus 3-induced hepatitis in rats. Hepatology. 1987 Jul-Aug;7(4):732–736. doi: 10.1002/hep.1840070419. [DOI] [PubMed] [Google Scholar]
  16. Hammarström S., Bernström K., Orning L., Dahlén S. E., Hedqvist P. Rapid in vivo metabolism of leukotriene C3 in the monkey Macaca irus. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1109–1115. doi: 10.1016/0006-291x(81)91562-x. [DOI] [PubMed] [Google Scholar]
  17. Hammarström S., Orning L., Bernström K. Metabolism of leukotrienes. Mol Cell Biochem. 1985 Nov;69(1):7–16. doi: 10.1007/BF00225922. [DOI] [PubMed] [Google Scholar]
  18. Huber M., Guhlmann A., Jansen P. L., Keppler D. Hereditary defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion. Hepatology. 1987 Mar-Apr;7(2):224–228. doi: 10.1002/hep.1840070204. [DOI] [PubMed] [Google Scholar]
  19. Huber M., Keppler D. Inhibition of leukotriene D4 catabolism by D-penicillamine. Eur J Biochem. 1987 Aug 17;167(1):73–79. doi: 10.1111/j.1432-1033.1987.tb13305.x. [DOI] [PubMed] [Google Scholar]
  20. Häussinger D., Stehle T., Gerok W. Effects of leukotrienes and the thromboxane A2 analogue U-46619 in isolated perfused rat liver. Metabolic, hemodynamic and ion-flux responses. Biol Chem Hoppe Seyler. 1988 Feb;369(2):97–107. doi: 10.1515/bchm3.1988.369.1.97. [DOI] [PubMed] [Google Scholar]
  21. Häussinger D., Stehle T. Hepatocyte heterogeneity in response to icosanoids. The perivenous scavenger cell hypothesis. Eur J Biochem. 1988 Aug 1;175(2):395–403. doi: 10.1111/j.1432-1033.1988.tb14209.x. [DOI] [PubMed] [Google Scholar]
  22. Häussinger D., Stehle T., Tran-Thi T. A., Decker K., Gerok W. Prostaglandin responses in isolated perfused rat liver: Ca2+ and K+ fluxes, hemodynamic and metabolic effects. Biol Chem Hoppe Seyler. 1987 Nov;368(11):1509–1513. doi: 10.1515/bchm3.1987.368.2.1509. [DOI] [PubMed] [Google Scholar]
  23. Iwai M., Hagmann W., Keppler D., Jungermann K. Leukotriene C4 metabolism during its action on glucose and lactate balance and flow in perfused rat liver. Biol Chem Hoppe Seyler. 1988 Oct;369(10):1131–1136. doi: 10.1515/bchm3.1988.369.2.1131. [DOI] [PubMed] [Google Scholar]
  24. Iwai M., Jungermann K. Leukotrienes increase glucose and lactate output and decrease flow in perfused rat liver. Biochem Biophys Res Commun. 1988 Feb 29;151(1):283–290. doi: 10.1016/0006-291x(88)90591-8. [DOI] [PubMed] [Google Scholar]
  25. Iwai M., Jungermann K. Possible involvement of eicosanoids in the actions of sympathetic hepatic nerves on carbohydrate metabolism and hemodynamics in perfused rat liver. FEBS Lett. 1987 Aug 31;221(1):155–160. doi: 10.1016/0014-5793(87)80371-x. [DOI] [PubMed] [Google Scholar]
  26. Keppler D., Hagmann W., Rapp S., Denzlinger C., Koch H. K. The relation of leukotrienes to liver injury. Hepatology. 1985 Sep-Oct;5(5):883–891. doi: 10.1002/hep.1840050530. [DOI] [PubMed] [Google Scholar]
  27. Keppler D., Huber M., Baumert T., Guhlmann A. Metabolic inactivation of leukotrienes. Adv Enzyme Regul. 1989;28:307–319. doi: 10.1016/0065-2571(89)90078-2. [DOI] [PubMed] [Google Scholar]
  28. Keppler D., Huber M., Baumert T. Leukotrienes as mediators in diseases of the liver. Semin Liver Dis. 1988 Nov;8(4):357–366. doi: 10.1055/s-2008-1040557. [DOI] [PubMed] [Google Scholar]
  29. Kuiper J., Casteleyn E., Van Berkel T. J. Regulation of liver metabolism by intercellular communication. Adv Enzyme Regul. 1988;27:193–208. doi: 10.1016/0065-2571(88)90017-9. [DOI] [PubMed] [Google Scholar]
  30. Kuiper J., Zijlstra F. J., Kamps J. A., van Berkel T. J. Identification of prostaglandin D2 as the major eicosanoid from liver endothelial and Kupffer cells. Biochim Biophys Acta. 1988 Mar 25;959(2):143–152. doi: 10.1016/0005-2760(88)90025-2. [DOI] [PubMed] [Google Scholar]
  31. Kukongviriyapan V., Stacey N. H. Inhibition of taurocholate transport by cyclosporin A in cultured rat hepatocytes. J Pharmacol Exp Ther. 1988 Nov;247(2):685–689. [PubMed] [Google Scholar]
  32. Le Thai B., Dumont M., Michel A., Erlinger S., Houssin D. Cyclosporine-induced cholestasis: inhibition of bile acid secretion is caused by the parental molecule. Transplant Proc. 1987 Oct;19(5):4149–4151. [PubMed] [Google Scholar]
  33. Lewis R. A., Austen K. F. The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 Apr;73(4):889–897. doi: 10.1172/JCI111312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. McColl S. R., Hurst N. P., Cleland L. G. Modulation by phorbol myristate acetate of arachidonic acid release and leukotriene synthesis by human polymorphonuclear leukocytes stimulated with A23187. Biochem Biophys Res Commun. 1986 Dec 15;141(2):399–404. doi: 10.1016/s0006-291x(86)80186-3. [DOI] [PubMed] [Google Scholar]
  35. Ormstad K., Uehara N., Orrenius S., Orning L., Hammarström S. Uptake and metabolism of leukotriene C3 by isolated rat organs and cells. Biochem Biophys Res Commun. 1982 Feb 26;104(4):1434–1440. doi: 10.1016/0006-291x(82)91410-3. [DOI] [PubMed] [Google Scholar]
  36. Orning L., Keppler A., Midtvedt T., Hammarström S. In vivo formation of omega-oxidized metabolites of leukotriene C4 in the rat. Prostaglandins. 1988 Apr;35(4):493–501. doi: 10.1016/0090-6980(88)90025-1. [DOI] [PubMed] [Google Scholar]
  37. Orning L., Norin E., Gustafsson B., Hammarström S. In vivo metabolism of leukotriene C4 in germ-free and conventional rats. Fecal excretion of N-acetylleukotriene E4. J Biol Chem. 1986 Jan 15;261(2):766–771. [PubMed] [Google Scholar]
  38. Orning L. Omega-oxidation of cysteine-containing leukotrienes by rat-liver microsomes. Isolation and characterization of omega-hydroxy and omega-carboxy metabolites of leukotriene E4 and N-acetylleukotriene E4. Eur J Biochem. 1987 Dec 30;170(1-2):77–85. doi: 10.1111/j.1432-1033.1987.tb13669.x. [DOI] [PubMed] [Google Scholar]
  39. Ouwendijk R. J., Zijlstra F. J., van den Broek A. M., Brouwer A., Wilson J. H., Vincent J. E. Comparison of the production of eicosanoids by human and rat peritoneal macrophages and rat Kupffer cells. Prostaglandins. 1988 Mar;35(3):437–446. doi: 10.1016/0090-6980(88)90134-7. [DOI] [PubMed] [Google Scholar]
  40. Rotolo F. S., Branum G. D., Bowers B. A., Meyers W. C. Effect of cyclosporine on bile secretion in rats. Am J Surg. 1986 Jan;151(1):35–40. doi: 10.1016/0002-9610(86)90008-5. [DOI] [PubMed] [Google Scholar]
  41. SCHIMASSEK H. [Metabolites of carbohydrate metabolism in the isolated perfused rat liver]. Biochem Z. 1963;336:460–467. [PubMed] [Google Scholar]
  42. Sakagami Y., Mizoguchi Y., Seki S., Kobayashi K., Morisawa S., Yamamoto S. Release of peptide leukotrienes from rat Kupffer cells. Biochem Biophys Res Commun. 1988 Oct 14;156(1):217–221. doi: 10.1016/s0006-291x(88)80827-1. [DOI] [PubMed] [Google Scholar]
  43. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  44. Stene D. O., Murphy R. C. Metabolism of leukotriene E4 in isolated rat hepatocytes. Identification of beta-oxidation products of sulfidopeptide leukotrienes. J Biol Chem. 1988 Feb 25;263(6):2773–2778. [PubMed] [Google Scholar]
  45. Tiegs G., Wendel A. Leukotriene-mediated liver injury. Biochem Pharmacol. 1988 Jul 1;37(13):2569–2573. doi: 10.1016/0006-2952(88)90248-1. [DOI] [PubMed] [Google Scholar]
  46. Tran-Thi T. A., Gyufko K., Häussinger D., Decker K. Net prostaglandin release by perfused rat liver after stimulation with phorbol 12-myristate 13-acetate. J Hepatol. 1988 Apr;6(2):151–157. doi: 10.1016/s0168-8278(88)80026-6. [DOI] [PubMed] [Google Scholar]
  47. Tran-Thi T. A., Gyufko K., Reinke M., Decker K. Output and effects of thromboxane produced by the liver perfused with phorbol myristate acetate. Biol Chem Hoppe Seyler. 1988 Oct;369(10):1179–1184. doi: 10.1515/bchm3.1988.369.2.1179. [DOI] [PubMed] [Google Scholar]
  48. Tran-Thi T. A., Häussinger D., Gyufko K., Decker K. Stimulation of prostaglandin release by Ca2+-mobilizing agents from the perfused rat liver. A comparative study on the action of ATP, UTP, phenylephrine, vasopressin and nerve stimulation. Biol Chem Hoppe Seyler. 1988 Jan;369(1):65–68. doi: 10.1515/bchm3.1988.369.1.65. [DOI] [PubMed] [Google Scholar]
  49. Tripp C. S., Mahoney M., Needleman P. Calcium ionophore enables soluble agonists to stimulate macrophage 5-lipoxygenase. J Biol Chem. 1985 May 25;260(10):5895–5898. [PubMed] [Google Scholar]
  50. Uehara N., Ormstad K., Orning L., Hammarström S. Characteristics of the uptake of cysteine-containing leukotrienes by isolated hepatocytes. Biochim Biophys Acta. 1983 Jul 13;732(1):69–74. doi: 10.1016/0005-2736(83)90187-6. [DOI] [PubMed] [Google Scholar]
  51. Weckbecker G., Keppler D. O. Leukotriene C4 metabolism by hepatoma cells deficient in the uptake of cysteinyl leukotrienes. Eur J Biochem. 1986 Feb 3;154(3):559–562. doi: 10.1111/j.1432-1033.1986.tb09435.x. [DOI] [PubMed] [Google Scholar]
  52. Whiting P. H., Burke M. D., Thomson A. W. Drug interactions with cyclosporine: implications from animal studies. Transplant Proc. 1986 Dec;18(6 Suppl 5):56–70. [PubMed] [Google Scholar]
  53. Wolkoff A. W., Johansen K. L., Goeser T. The isolated perfused rat liver: preparation and application. Anal Biochem. 1987 Nov 15;167(1):1–14. doi: 10.1016/0003-2697(87)90127-8. [DOI] [PubMed] [Google Scholar]
  54. Ziegler K., Frimmer M. Cyclosporin A and a diaziridine derivative inhibit the hepatocellular uptake of cholate, phalloidin and rifampicin. Biochim Biophys Acta. 1986 Feb 13;855(1):136–142. doi: 10.1016/0005-2736(86)90197-5. [DOI] [PubMed] [Google Scholar]
  55. Ziegler K., Frimmer M., Koepsell H. Photoaffinity labeling of membrane proteins from rat liver and pig kidney with cyclosporine diazirine. Involvement of binding to plasma membranes cytotoxic effects. Transplantation. 1988 Aug;46(2 Suppl):15S–20S. [PubMed] [Google Scholar]
  56. Ziegler K., Polzin G., Frimmer M. Hepatocellular uptake of cyclosporin A by simple diffusion. Biochim Biophys Acta. 1988 Feb 8;938(1):44–50. doi: 10.1016/0005-2736(88)90120-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES